
DECEMBER 1995 Delphi INFORMANT ▲ 1

ON THE COVER

7 Objects in the Stream — Alan Ciemian
The Delphi VCL includes powerful capabilities for storing
and loading components to and from streams, but these
capabilities are difficult to implement and are nearly
undocumented — until now. Mr Ciemian presents a set
of classes that provide the framework for a stream-based
persistent object library.

FEATURES

18 Informant Spotlight — Douglas Horn
The MRU list is a standard fixture of shrink-wrapped
Windows applications, but is not in Delphi’s ready-made
bag of tricks. This is no longer a problem however,
because Mr Horn shows us how to present users with a list
of their most recently used files.

23 Useless Stuff — David Faulkner
Need a break? How about an electronic poker game? This
month, Mr Faulkner introduces a CardDeck component and
then uses it to create a little bit of Las Vegas. And despite
this column’s name, you’re bound to glean one or two
useful techniques.

33 Sights & Sounds — Sedge Simons, Ph.D.
Need hotspots? That is, do you need to create irregularly-
shaped mouse-sensitive areas on a form? Need them to
be invisible? No problem. Dr Simons shows us how to use
Windows API regions to create unorthodox interfaces.

38 DBNavigator — Cary Jensen, Ph.D.
When it comes to databases, locating specific records
quickly — with or without an index — is what it’s all
about. And Delphi offers a wealth of methods for the task.
Dr Jensen shares seven demonstration projects, and you’ll
want to hit CompuServe to get them all.

44 At Your Fingertips — David Rippy
Mr Rippy, our favorite Object Pascal trickster, returns with
techniques for: changing the color of selected rows in a
DBGrid, executing other programs from a Delphi applica-
tion, an efficient way to play .WAV files, and a nifty
Database Desktop quick tip.

46 Visual Programming — Blake Versiga
Mr Versiga gets creative with the Delphi Outline com-
ponent and uses it to track the lineage of — yes —
Great Pyraneese dogs. It’s an introduction to the many
uses of the Outline component including its owner-
draw capabilities.

REVIEWS

50 ReportPrinter — Product review by Bill Todd
Consisting of four Delphi components, Nevrona Designs’
ReportPrinter 1.1 is a compact alternative to Delphi’s
ReportSmith, but is it up to the task of heavy-duty report-
ing? Mr Todd reviews the new tool, as well as the Delphi
component included as part of Crystal Reports 4.5.

DEPARTMENTS
2 Editorial
3 Delphi Tools
5 Newsline

December 1995 - Volume 1, Number 8

Cover Art By: Doug Smith

Objects in the Stream
Building a Stream-Based Persistent Object Library

Symposium

“If you disagree violently with some of my choices I shall be pleased.
We arrive at values only through dialectic.”

— Anthony Burgess, 99 Novels
There was no violent reaction per se to Vince Kellen’s article “Why Do Programmers Love Delphi?”
in our October 1995 issue, but reaction there was. Let’s start with this note from Mr Sarasalo:
Vince Kellen,
I think you are right on the money

on how Delphi feels "thinner".
Thinner than VB, ObjectPAL, Access
or Actor, but no thinner than C/SDK.

Comparing it to ObjectPAL, how-
ever, I think there is another
aspect: encapsulation. Object Pascal
enables, and if you do more than
just add features to forms, encour-
ages good interface design between
different parts of a software project.
So, in my experience, while
ObjectPAL is great for small jobs
and in-house productivity enhance-
ments, when one is working on a
larger project that needs to be
maintained over time, Delphi's
Object Pascal is far superior.

Then code maintenance with
Delphi's editor is much easier than
with ObjectPAL's editor.

Wilhelm Sarasalo, Pacific Software

This message from Mr Bacon
ends with some sloganeering:

Vince,
I saw your article ("101 reasons

why programmers prefer Delphi", or
some such title) and felt compelled
to respond. You dismissed the idea
that the incredible depth and breadth
of the Object Pascal language was the
reason why Delphi was such a cool
product. I have to disagree!

All the coders at this site love
Delphi because of Object Pascal: it
hides and simplifies the complicated
stuff by default, but when you need
the power routines you can switch
them in easily. The IDE is really easy
to work with, and what better exam-
ple code could you get than the
source of the product itself?

Borland has really come up with a
great product, and it shows in the
DECEMBER 1995
number of developers who are mak-
ing it their #1 coding tool. Down
with VB! Long live Delphi!

Tim Bacon (York, England)

And finally, from what may
now be a sovereign nation,
this message from Mr Léger:

Dear Editor,
I am writing this letter in response

to Vince Kellen’s article “Why Do
Programmers Love Delphi?” in the
October 1995 issue of Delphi
Informant. ... I generally agree with
his arguments but I feel he missed
the most important feature of
Delphi: Delphi Is Easy.

Nothing can beat the ease of use
when one can type
MyWindow.Width := 100 or
MyWindow.Caption := ‘My Title’.
We switched from C to Delphi
because it’s easy to program, fast to
compile, and generates self-con-
tained executables. Personally, I
prefer C syntax, but since we are in
a very competitive market, efficient
tools can’t be ignored. In fact, give
me a Delphi tool with C syntax and
I’m switching back ...

I don’t think programmers are
looking for the challenge of learning
a new tool like Delphi. I don’t want
to fight with my knife when I’m eat-
ing a steak. I just want the meat cut,
nothing more. Mr Kellen is mistaken
here. I believe the challenge lies in
the greater possibilities offered to
the programmer when he is devel-
oping an application because he can
do much more in less time. Delphi is
a sharp knife.

As is your logic Dominique.
But does his postscript
betray him?
Send flames to: Dominique Léger,
Québec

PS: I love the Delphi Informant. It’s
pages are filled with useful informa-
tion and helpful hints. Can’t leave
the office without it!

Love is a strong word, and
deeply appreciated in this
context. Perhaps there is
more passion at work here
than you admit? Many
thanks in any case, and here
is Vince’ reply:

Dominique brings up a great point
about how easy it is to understand the
Object Pascal language, but I have to
disagree with Dominique when he
says that programmers aren’t looking
for a challenge of learning a new tool
like Delphi. I am using the word chal-
lenge in a positive sense, not a nega-
tive one. I have found that many (not
all) programmers get tired of working
in the same environment unless there
is some challenge. Whether it’s learn-
ing the complexities of writing serious
custom components or delving into
Windows events, Delphi provides a
smooth ramp to give programmers of
all skill levels a challenge.

Vince Kellen

And in closing, I have anoth-
er topic I’d like to address
this month.

Dear Jerry:
Just as I continue to enjoy the

Paradox Informant magazine, I
find the Delphi Informant a gold
mine of news, ideas, and tech-
niques. Keep it coming!

With respect to Delphi, I have a con-
cern which I have not seen addressed
in any of the trade magazines, and I
could not find anyone at Borland who
could help me. Is Local InterBase
included in the BDE distribution rights
that comes with the client (desktop)
version of Delphi? ...To use InterBase
is clearly more pain and hassle than to
use Paradox tables. Yet the long-term
benefits of InterBase are clear. ... Are
there other independent software
developers and shareware authors out
there who find this Local InterBase
matter troubling? Please comment.

Many thanks, Paul
(P. K. Winter, Toronto, ON)

Yes there are. This is a com-
mon question, and now,
thanks to InterBase Product
Marketing Manager Keith
Bigelow, I have an answer.
It takes the form of a news
item and appears on page
10. And thank you Paul for
the kind words about my
two favorite magazines.

Thanks for reading.

Jerry Coffey,
Editor-in-Chief

CompuServe: 70304,3633
Internet: 70304.3633@com-
puserve.com
Fax: 916-686-8497
Snail: 10519 E. Stockton
Blvd., Ste. 142,
Elk Grove, CA
95624
Delphi INFORMANT ▲ 2

DECEMBER 1995

Delphi
T O O L S

New Products
and Solutions

Delphi Training Tour

Grumpfish Inc. has posted its
training schedule through June
1996. It offers three courses:

Introduction to Delphi (one day),
Delphi Fundamentals (two days),

and Delphi Advanced (three days).
The classes are US$295 to

US$995, with a discount offered
for early registration.

For more information call
1-800-GO-DELPHI or e-mail
CompuServe: 102121,2741

or Internet:
training@ZacCatalog.com.
TurboPower Releases Async Professional for Delphi

TurboPower Software of

Colorado Springs, CO is ship-
ping Async Professional for
Delphi, a serial communica-
tions library with VCL com-
ponents for Delphi.

Async Professional for Delphi
(APD) is the first communica-
tions toolkit to include ready-to-
use terminal windows, protocol
status, modem selection, and
dialing dialog boxes as compo-
nents in Delphi’s native VCL.
All the library functions, from
serial port access to file transfers,
are implemented as VCL com-
ponents. APD also has a unique
architecture that offers automat-
ic background functions, such
as file transfers, dialing terminal
updating, etc. The port compo-
nent generates events under pro-
grammer-defined conditions.
This approach maximizes com-
munications throughput and
responsiveness of the application
to user input.

APD also offers a full selec-
tion of protocols including
Z/Y/XModem, CompuServe
B+, ASCII, and more. It has
an event-driven dialing engine,
flexible modem database with
over 100 pre-configured
modems, and logging and trac-
ing tools for debugging. APD
can use COMM.DRV, other
COMM.DRV-compatible
replacements, or FOSSIL. It
includes an ANSI terminal
emulator with scrollback and
capture.

Price: US$179. No royalties required.
Includes source code; example programs;
documentation; free support via phone,
fax, and e-mail; free updates; and a 60-
day money-back guarantee.

Contact: TurboPower Software, PO Box
49009, Colorado Springs, CO 80949-9009

Phone: (800) 333-4160 or
(719) 260-9136

Fax: (719) 260-7151

E-Mail: CIS: 76004,2611
ReportWorks 1.03 for Delphi Ships

HSoftWare of Kitchener,

Ontario, has released version
1.03 of ReportWorks for
Delphi. The ReportWorks
component allows developers
to create reports with few lines
of code and little overhead.
ReportWorks offers left,
right, or center column justifi-
cation, pre-defined line sizes
and widths, standard graphic
shapes, and imported images
such as bitmaps and metafiles.
It also supports memo fields,
and text strings longer than
255 characters can be output
with automatic word-wrap
within the report borders.
With ReportWorks, page mea-
surements can be made in
inches, millimeters, or points,
and the fonts, pens, and
brushes are customizable.

ReportWorks can direct
reports to the built-in preview
screen, the printer, or to a file.
The screen redraw enables the
user to quickly skim or skip
report pages, and zoom to any
percentage. From the Object
Inspector, the preview page
can be set to have a black bor-
der outline.

Tracking of report page
lines shows the developer the
report’s printing status, and
line height can be set by text
height or lines-per-inch.

Price: US$34.95 (no royalties, source
code included). Shareware is available on
the Informant and Delphi CompuServe
forums, filename RPTWORKS.ZIP.
Registration can be made in the SWREG
forum (ID# 6751).

Contact: HSoftWare, 385 Fairway Road
South, Suite 4A-154, Kitchener, Ontario,
Canada N2C 2N9

Fax: (519) 894-0739

E-Mail: CIS: 76741,2077
Delphi INFORMANT ▲ 3

DECEMBER 1995

Delphi
T O O L S

New Products
and Solutions

New Delphi Books

Delphi Developer’s Guide
Xavier Pacheco & Steve Teixeira

Sams Publishing
ISBN: 0-672-30704-9

Price: US$49.99
(907 pages, CD-ROM)
Phone: (800) 428-5331
Objective Software Technology Introduces ABC for Delphi

Objective Software

Technology has released ABC
for Delphi, which extends
Delphi’s VCL with over 25
visual control components for
building database applications,
graphical systems, or general
programming.

ABC for Delphi provides
central error handling with
messages, log files, and error
locations that tie exceptions to
original source code. A data-
base version also offers table-
driven messages and error logs.

Developers can monitor
reports and log program execu-
tion using the Stopwatch com-
ponent. The Navigator compo-
nent scrolls records up to four
times faster than the standard
Delphi navigator, and adds extra
buttons for jumps, bookmarks,
and append processing.
The DBTableGrid and

DBQueryGrid components
build a complete database form
and require only three property
settings for a live connection.
This eliminates the need to link
additional Table, Query, and
DataSource components.

Shaded backgrounds and
tiled images can easily be
added to forms, and there are
special components to add
these effects to the background
of MDI main forms. Several
picture buttons provide
advanced graphics, 3D labels,
and repeating click events on a
form. A transparent button
can also detect mouse move-
ment over other controls.

Demonstration versions are
available in the Informant and
Delphi CompuServe forums,
filenames: ABC1DEMO.EXE,
and ABC1COMP.EXE.

For orders call ZAC catalogs
in the USA (1-800-GO-DEL-
PHI), QBS Software in the
UK (+44 181 994 4842),
K&R Software in Germany
(+49 2272 901585) or GUI
Computing in Australia (+61
3 9804 3999).

Price: Runtime Version 1.0a, US$95; Pro
Version 1.0a with source code, US$184.

Contact: Objective Software Technology,
PO Box E138, Queen Victoria Terrace, ACT
2600, Australia

Phone: +61 6 273 2100

Fax: +61 6 273 2190

E-Mail: CIS: 100035,2441
VCaLive Offers New 3D Features

Odyssey Technologies, Inc. of

Cincinnati, OH has released
VCaLive, a VCL component
pack for Delphi. These compo-
nents give applications a distinc-
tive appearance with bitmap-
textured 3D labels and shapes,
as well as animation effects.
This pack includes JazLabel

and JazShape which extend the
functionality of Delphi’s Label
and Shape components.
Developers can add impact with
3D extrusion, shadowing, and
bitmap texturing. In addition,
the JazCredits and JazBanners
components provide animation
by scrolling information either
horizontally or vertically.

VCaLive also has a Layout
unit to extend Delphi’s Printers
unit. It features margin settings,
column printing, word-wrap-
ping, automatic font-sizing of
text boxes, and grid printing.

Price: US$89.

Contact: Odyssey Technologies, Inc.,
PO Box 62733, Cincinnati, OH 45262-0733

Phone: (800) 293-7893

Fax: (513) 777-8026

Web Site: http: //ww2.eos.net/odyssey/

E-Mail: Internet: odyssey@eos.net
Delphi INFORMANT ▲ 4

DECEMBER 1995

News
L I N E

December 1995

Borland Reports a Profit
Borland International Inc. has
announced a net income of
US$2.6 million (US$.08 per

share) on revenues of US$51.3
million for its second fiscal quar-
ter ending September 30, 1995.

These results reflect the second
consecutive quarter of profitabili-
ty since Borland restructured in
January 1995, and focused its

strategy on software developers.
The net income for the six

months ending September 30,
1995 was US$5.4 million

(US$.18 per share) on revenues
of US$105.1 million.

According to Borland’s President,
Gary Wetsel, this progress was
particularly pleasing because

Borland overcame the seasonal
slowness in Europe and the uncer-
tainty surrounding Windows 95.
He also said the results reflect

growth in their client/server busi-
ness, including Delphi

Client/Server and InterBase.
Net income for the same quar-
ter in the prior fiscal year was

US$4 million (US$.01 per share)
on revenues of US$81.3 million.
InterBase Distribution, Pricing, and Licensing Explained

Scotts Valley, CA — Every

copy of Delphi and Delphi
Client/Server ships with a copy
of the Local InterBase Server
that allows Delphi developers
to design and prototype
client/server applications
remotely on one machine. This
means that development can
occur on a laptop while on the
train, airplane, or at the cus-
tomer site, and the ultimate
database to be used can be
changed when the application
is ready to be deployed.

Because InterBase is an
ANSI SQL 92-compliant serv-
er, all the dynamic SQL and
transactions that Delphi devel-
opers write in their application
against Local InterBase are
immediately applicable to any
multi-user SQL server such as
InterBase NT, Oracle 7, Sybase
10, and Microsoft SQL Server.

InterBase workgroup and
enterprise developers receive
the greatest advantage by using
Local InterBase. They can write
the SQL their application
requires as well as the server
objects to make their database
applications perform: triggers,
stored procedures, and views.
Local InterBase applications
can scale up to any of the 13
versions of InterBase currently
available, including Windows
NT, Novell NetWare, and 10
versions of UNIX.

For example, if an applica-
tion will be deployed against
InterBase for NT, the developer
can use Delphi and the Local
InterBase Server to create a
database application with SQL
queries, views, and stored pro-
cedures. The resulting applica-
tion, running on the Windows
or Windows 95 development
computer, can then be scaled
up to a multi-user application
by copying the database to an
installed InterBase Workgroup
Server for NT. Using the
Windows File Manager, the
developer can drag and drop
the database from the laptop
computer to the NT database
server’s data volume, without
worrying about rewriting server
objects such as triggers and
stored procedures. Once copied
to the NT server, the database
and its objects automatically
adopt the security of NT, the
multi-user capability of NT,
and the performance of a dedi-
cated NT database server. The
Delphi application, while until
now used an alias to point to
the database on the develop-
ment laptop, requires one sim-
ple change to redirect the alias
so that it now points to the
InterBase NT Server’s copy of
the database.

To clarify, the standard
Delphi package includes Local
InterBase, but no distribution
rights. Delphi Client/Server
includes Local InterBase, and
Local InterBase distribution
rights. When distributed,
Local InterBase is a single-user
database.
To take a prototype into pro-

duction, the developer would
buy either the NT or NLM
version (US$650), the number
of user licenses (US$195 each,
US$1670/10 pack), and then
move the database to the serv-
er’s data volume. (Use File
Manager for moving from
Windows 3.1 to Windows NT,
use Server Manager’s Back-up
and Restore for going from
Windows 3.1 to NetWare.)

Like Delphi, InterBase has a
money-back guarantee.
UK Borland Developers Conference 1996

London — Borland Inter-

national UK Limited, Desktop
Associates Limited, and
Dunstan Thomas Limited have
planned the UK Borland
Developers Conference, 1996.

The event will be held in
London, England, April 28-
30, 1996 at the Royal
Lancaster Hotel, Lancaster
Gate, London.

In the last few months, the
UK Borland Developers
Conference has added 10
new conference sessions.
With a total of 50 sessions,
these meetings will discuss
all Borland products, includ-
ing: Delphi, Paradox, C++,
client/server solutions,
InterBase, and others.

They will also address pro-
gramming, solutions, tools and
techniques, and methodologies.
All Borland Developers
Conference delegates will
receive a free copy of Borland
software, documentation, and
a diskette or CD containing
all the conference sessions and
code, and a free tote bag con-
taining sample issues of Delphi
Informant, Paradox Informant,
and Oracle Informant.

Pricing for the UK Borland
Developers Conference 1996
for both days is £495.00 +
vat. Those attending only one
day pay £250.00 + vat.
Discounts are available for
three or more attending from
the same company.

For more information phone
Desktop Associates Limited at
+44 (0)171 381 9995, fax +44
(0)171 381 9777, or e-mail CIS:
100016,552 (Internet:
100016.552@compuserve.com).
Delphi INFORMANT ▲ 5

DECEMBER 1995

News
L I N E

December 1995

Database &
Client/Server World

DCI’s Database & Client/Server
World is scheduled for December

5-8, 1995 at the Navy Pier in
Chicago. The event will feature

six conferences covering a variety
of client/server and database
topics. Over 300 venders are

scheduled to display their
products and services.
For more information,

contact DCI at (508) 470-3870
or e-mail

74404.156@compuserve.com.

Borland Promotes
Gross, Rosenberg,

and Bartelmie
Borland International Inc. has

promoted Paul Gross to senior
vice president of Research and

Development, Jonathan B.
Rosenberg to vice president of
Borland C++ and Companion

Products Development, and
Marcia Bartelmie to vice presi-

dent of Human Resources.
Informant Communications Group Launches New Web Site

Elk Grove, CA — Informant

Communications Group, Inc.
(ICG) has launched a new
Web site on the Internet.
Located at http://www.infor-
mant.com, this site offers
detailed information about all
Informant publications and
services. The new Informant
Web site replaces the
Informant Bulletin Board
(ICGBB) which will be discon-
tinued December 31, 1995.

From the initial Web site,
users can choose from several
sections, including magazines,
catalogs, CDs, files to down-
load, advertising, ICG news,
ICG apparel, and general
information.

The magazine section consists
of several pages covering every
aspect of Delphi Informant,
Paradox Informant, and Oracle
Informant. One of its more
unique features is the Table of
Contents outlining the current
issue’s articles. Users will be able
to sample content from each
magazine, and have access to a
listing of bookstores that carry
ICG publications. A magazine
article index will also be con-
tained on the Web page.

At the Web site, customers
can place subscription orders
for any ICG magazine, check
the status of a subscription,
request a free sample issue, and
place orders for back issues.
Users can also order the Delphi
Informant Works and Paradox
Informant Works CD-ROMs.

Those interested in contribut-
ing articles to any ICG publica-
tion will have access to writer
style guides and editorial calen-
dars, and can submit letters to
the editor. ICG will also have a
variety of links to third-party
vendors that provide add-in
products for Delphi, Paradox,
and Oracle.

Users can also browse the
third-party catalogs produced by
ICG including Delphi Power
Tools, Paradox Power Tools, and
Borland C++ Power Tools. For
those interested in advertising in
an ICG magazine or catalog,
advertising media kits can be
requested via this Web page.

In early 1995, ICG opened
the Informant forum on
CompuServe (GO ICGFO-
RUM). The files located in
this forum will also be avail-
able on the Internet at
ftp.informant.com. Details on
the ICG ftp site were not
available at press time.

Companies and user groups
interested in linking their
Web site to the ICG Web site
should contact Carol
Boosembark via CompuServe
at 72702,1274 or call (916)
686-6610 ext. 16.
SD 95 East: Update

Washington, DC — At

Software Development 95 East,
Borland wasted no time getting
Delphi32 into the spotlight.
The October event hosted over
150 venders and 8,000 profes-
sionals, and the Borland booth
was full during the entire 3-day
show. Groups of 40 or more
developers gathered for
demonstrations of Delphi32,
Paradox 7, and C++ 5.0.

On the eve of the show,
Borland held a product dem-
onstration and reception. C++
Product Manager Bill Dunlap
began the presentation with an
overview of the new version of
C++. This was followed by the
Dover Elevator Systems
Delphi case study, and Delphi
Product Manager Zack
Urlocker concluded the

evening with a discus-
sion of the new fea-
tures in Delphi32.

SD 96 West will wel-
come over 300 venders
to the Moscone Center
on March 25-29, 1996.
For information call
Miller Freeman at
(415) 905-2702, or
visit their web site at

http://www.mfi.com/sdconfs.
TurboPower’s Orpheus Bundles with BSS
Application Framework
Fairfax Station, VA —
Business Software Systems has
announced an agreement to
bundle TurboPower’s Orpheus
with their new BSS Applica-
tion Framework.

The BSS Application
Framework was developed to
maintain consistent program
design and increase program-
ming efficiency. It can advance a
development project two to
three months into its develop-
ment cycle, according to the
company. In the bundle, the
BSS Application Framework
consists of three projects, 10
units, a custom DBNavigator,
and a project guide.

The three projects include
one for development, one mas-
ter project that is the final pro-
gram, and one DLL that main-
tains all the search windows.
The units include a registration
splash screen, a custom login
screen, a Single Document
Interface (SDI) menu panel
with custom DBNavigator, and
maintenance, transaction, post-
ing, system setup, and search
screens.

The application framework
extensively uses Orpheus to
offer features not found in
many standard Delphi VCL
controls.
The BSS Application Frame-

work and Orpheus bundle is
available for US$495 per user.
For more information,
contact Business
Software Systems, Inc.
at (703) 503-5600.
Delphi INFORMANT ▲ 6

DECEMBER 1995

On the Cover
Delphi / Object Pascal

By Alan Ciemian

Objects in the Stream
A Framework for a Stream-Based Persistent Object Library
D elphi strongly encourages and supports object-oriented programming.
However, Delphi lacks a simple mechanism for object persistence.
Although the Visual Component Library (VCL) includes powerful capa-

bilities for storing and loading components to and from streams, these capabili-
ties are difficult to implement and are nearly undocumented. Furthermore, for
managing simpler non-component persistent objects, Delphi’s component
streaming facilities seem like overkill.

This article presents a set of classes that provide the framework for a stream-based persistent
object library. In some ways, the classes resemble the streaming facilities of Borland’s OWL
(Object Windows Library), but they take full advantage of Delphi’s updated class model and
class registration facilities, and integrate well with the VCL.

The design decisions of these classes were based on:
1) Full support of heterogeneous objects and lists of objects.
2) Simple class interfaces that “feel” like Delphi.
3) Reasonable performance and storage efficiency without compromising items 1 and 2.
Overview
Before getting into the details, I will present a quick survey of the class-
es, their relationships to each other, and their relationships to the VCL
hierarchy (see Figure 1).

TacStreamable is an abstract class that defines the required interface for
classes supporting stream-based persistence. It’s a subclass of TPersistent,
Delphi’s base class for persistent classes. The TPersistent class is the high-
est class in the VCL hierarchy accepted by Delphi’s run-time class regis-
tration facilities. TPersistent also declares the Assign method (and its pro-
tected implementation AssignTo), the VCL’s interface for object assign-
ment. The TacStreamable class requires both features.

TacObjStringList is a base class for lists of persistent objects. It’s reason-
able to suspect that TacObjStringList is a subclass of TStrings or TList.
However, because it’s extremely useful to treat an entire list as a single
persistent object, I descended TacObjStringList from TacStreamable. If
Delphi supported multiple inheritance, TacObjStringList would be a sub-
Delphi INFORMANT ▲ 7

Figure 1: The
custom classes
presented in this
article and their
position in the
VCL hierarchy.

On the Cover

type
TacStreamable = class(TPersistent)
protected

{ Centralized field initialization }
procedure InitFields; virtual;
{ Stream interface }
constructor CreateFromStream(Stream: TacObjStream);
procedure SaveToStream (Stream: TacObjStream);

virtual; abstract;
procedure ReadFromStream(Stream: TacObjStream);

virtual; abstract;
{ Property methods }
function GetAsString: string; virtual;

public
{ Constructors }
constructor Create;
constructor CreateClone(const Other: TacStreamable);
{ Properties }
property AsString: string

read GetAsString;
end;

{ TacStreamable implementation }

constructor TacStreamable.Create;
begin

inherited Create;
InitFields;

end;

constructor TacStreamable.CreateClone
(const Other : TacStreamable);

begin
Create;
Assign(Other);
class of TStrings and TacStreamable. Since it does not,
TacObjStringList acquires its list characteristics through anoth-
er form of code reuse — namely containment.

TacObjStream is an abstract class that defines the required
interface for streams that read and save TacStreamable objects.
It provides the functionality for saving and reading objects to
any TStream subclass. It’s abstract because it does not include
the logic for managing the actual TStream.

TacFileObjStream is a TacObjStream subclass that implements
a file-based stream for persistent objects. In another example
of containment, the file stream functionality is provided by a
privately managed instance of TFileStream.
 end;

constructor TacStreamable.CreateFromStream
(Stream : TacObjStream);

begin
Create;
ReadFromStream(Stream);

end;

procedure TacStreamable.InitFields;
begin
end;

function TacStreamable.GetAsString;
begin

Result := '';
end;

Figure 2: The source listing for TacStreamable.
TacStreamable: Building Persistent Objects
Objects that need persistence must be instances of a subclass
of TacStreamable. This class defines the object’s responsibilities
in the streaming process. Figure 2 shows the source listing for
the TacStreamable class.

The protected virtual methods, SaveToStream and
ReadFromStream, are the most critical. Subclasses must override
these two methods to provide the necessary logic for saving and
reading the state of their objects. The TacObjStream class relies
on these methods for reading and saving all persistent objects.

The protected virtual method, InitFields, provides for class-
specific private initialization. All three constructors declared
for the TacStreamable class call this method either directly or
indirectly. Since TacStreamable does not contain any data
fields, the default implementation of InitFields is empty.

The Create constructor creates an instance with a default
state by calling the inherited constructor and the virtual
InitFields method.

The CreateClone constructor creates an instance from
another assignment-compatible instance. It relies on the
Create constructor to initialize the object to a default state,
and the Assign method, inherited from TPersistent, to copy
the other object’s state. CreateClone is analogous to a C++
copy constructor. Since it depends on TPersistent.Assign,
DECEMBER 1995
TacStreamable subclasses must override either the
TPersistent.AssignTo or the TPersistent.Assign method to
define the copy semantic of the class.

CreateFromStream is a protected constructor called by
TacObjStream to create an instance from a stream. After call-
ing the Create constructor to initialize the instance to a
default state, it calls the ReadFromStream method to update
the state from the stream.

The public property, AsString, returns the string representa-
tion of a persistent object. The protected virtual method,
GetAsString, provides the implementation. TacObjStringList
instances use the string representation as a means of refer-
Delphi INFORMANT ▲ 8

On the Cover
encing and displaying their contained objects. By default,
GetAsString returns an empty string.
TacObjStringList: Managing Persistent Objects
If your application only uses a few or a fixed number of persis-
tent objects, saving and reading them one by one is probably
sufficient. For applications that create a large or indeterminate
number of persistent objects, the ability to manage objects in
heterogeneous lists is critical. The TacObjStringList class is a base
class for persistent object containers. As previously discussed, the
TacObjStringList class is a subclass of TacStreamable and sup-
ports streaming the entire list as a single persistent object.

The TacObjStringList class acquires its list characteristics
through containment. Containment is an alternative
means of code reuse that allows a class to use the services
of another class by maintaining a reference to an instance
of that class.

Containment has advantages and disadvantages as com-
pared to inheritance. To expose the methods of the con-
tained object, the class must declare its own corresponding
methods that eventually call the methods of the contained
object. The resulting advantages include:
• control over method visibility,
• the ability to redefine the interface to the contained

object’s services, and
• the ability to modify the behavior of any of the contained

object’s methods.

The resulting disadvantages include:
• the added function call required, and
• the inability to access the contained object’s protected

interface.

Delphi includes two distinct types of list classes: the familiar
string lists (subclasses of TStrings) used by numerous VCL
components and the more generic TList class. Each item in a
string list consists of a string and an associated object. Each
item in a TList is a generic pointer.

The TacObjStringList class uses a contained list reference of
type TStrings. Using the TStrings class instead of the TList
class results in a more versatile class that works well in com-
bination with Delphi’s components (especially list-based
controls such as TListBox and TComboBox). TStrings is an
abstract class that defines the interface for all of Delphi’s
string lists, including TStringList, TListBoxStrings, and
TComboBoxStrings. Since the list reference type is TStrings
instead of a particular subclass, the TacObjStringList class
can work directly with any type of string list.

Using the TStrings reference in this manner, TacObjStringList
simulates a limited form of delegation. Delegation, in an
object-oriented sense, refers to a form of per-object inheri-
tance that allows different instances of a single class to behave
as if they were each inherited from a different class. At run-
DECEMBER 1995
time, each instance of the original class is associated with an
object of a second class, to which it delegates, or forwards, all
related method calls.

Specifically, the contained list reference determines the list behav-
ior for TacObjStringList instances. Depending on the actual class
of the contained list object, individual TacObjStringList instances
can behave as if inherited from TStringList, TListBoxStrings,
TComboBoxStrings, or any other subclass of TStrings.

Although the TacObjStringList class uses string lists internal-
ly, it does not directly expose these to its clients. Items are
inserted and removed as TacStreamable objects only. The
value of each object’s AsString property determines its associ-
ated string. This string identifies objects in the list and visu-
ally represents objects in lists associated with visible controls.

The TacObjStringList class supports object ownership and also
provides insertion and deletion notifications for its subclasses.

One last note before examining the implementation: the
design of TacObjStringList facilitates its use in conjunction
with list controls. Consider the following source:

var
ObjList : TacObjStringList;

...
{ ListBox refers to a TListBox component placed on a form }
ObjList := TacObjStringList.Create(ListBox.Items,False);

This code creates a TacObjStringList object, ObjList, that refer-
ences the string list associated with a specific list box, ListBox.
Used in this manner, ObjList also acts as a list manager for
ListBox. You can perform most list manipulations, including
insertions, deletions, and persistent storage, directly on the
ObjList and have the results automatically reflected in the visible
list. This reduces coupling the application’s logic to the interface,
limiting the effects of interface changes (such as changing from
a list box to a combo box) to a few lines of code.

The implementation of TacObjStringList can logically be
divided into two parts: list management and persistence.
Figure 3 shows the source listing for the class interface. The
following discussion covers the major aspects of the class.
Refer to the complete source for the remaining details.
The TacObjStringList Class
Five private fields relate to list management. The FList field is a
reference to the contained list object. FOwnList is a Boolean flag
that specifies ownership of the list referenced by FList.
FOwnObjects, another Boolean flag, specifies ownership of the
objects contained in the list. In both cases, ownership means the
TacObjStringList object has responsibility for freeing the owned
object(s). The FOnInsert and FOnDelete fields are method refer-
ences for the insertion and deletion notification events.

Public properties provide access to the TStrings object (read-
only), the count of objects in the list (read-only) and the list
Delphi INFORMANT ▲ 9

On the Cover

Figure 3: The source listing for the TacObjStringList interface.

public
{ Construction/Destruction }
constructor Create(const Strings : TStrings;

const OwnObjects : Boolean);
destructor Destroy; override;
{ List object access }
function AtIndex(const Idx: TacObjListIndex):

TacStreamable;
function AtName(const Name: string): TacStreamable;
{ Standard list methods }
procedure BeginUpdate;
procedure EndUpdate;
function Add(const Obj: TacStreamable):

TacObjListIndex;
procedure Insert(const Idx: TacObjListIndex;

const Obj: TacStreamable);
procedure Move(const FromIdx: TacObjListIndex;

const ToIdx: TacObjListIndex);
{ Deletes delete the objects if they are owned }
procedure DeleteIdx(const Idx: TacObjListIndex);
procedure DeleteObj(const Obj: TacStreamable);
procedure DeleteName(const Name: string);
procedure DeleteAll;
{ Removes NEVER delete the objects }
function RemoveIdx(const Idx: TacObjListIndex):

TacStreamable;
function RemoveObj(const Obj: TacStreamable):

TacStreamable;
function RemoveName(const Name: string):

TacStreamable;
{ ObjStringList specific methods }
procedure UpdateObjectName(const Idx: TacObjListIndex);
{ Public properties }
property Strings: TStrings

read FList;
property Count: TacObjListIndex

read GetCount;
property OwnObjects: Boolean

read FOwnObjects
write FOwnObjects;

property OwnList: Boolean
read FOwnList
write FOwnList;

end;

type
TacObjListIndex = Integer; { Indexing into lists }
TacObjListCount = LongInt; { For saving list count

to stream. }

type { for TacObjStringList notifications }
TacObjListNotifyEvent =

procedure (Idx: TacObjListIndex) of object;

type
TacObjStringList = class(TacStreamable)
private

{ Reference to contained list }
FList : TStrings;
{ Flag for list ownership }
FOwnList : Boolean;
{ Flag for list item ownership }
FOwnObjects : Boolean;
{ Delete notification }
FOnDelete : TacObjListNotifyEvent;
{ Insert notification }
FOnInsert : TacObjListNotifyEvent;
procedure ResetList(const Strings : TStrings;

const OwnObjs : Boolean);
procedure CloneContents(const OtherList:

TacObjStringList);
procedure FreeList;
procedure FreeObjects;
{ Property access methods }
function GetCount: TacObjListIndex;

protected
{ TPersistent overrides }
procedure AssignTo(Dest: TPersistent); override;
{ TacStreamable overrides }
procedure InitFields; override;
procedure ReadFromStream(Stream: TacObjStream);

override;
procedure SaveToStream (Stream: TacObjStream);

override;
{ Protected properties }
property OnObjDelete: TacObjListNotifyEvent

read FOnDelete
write FOnDelete;

property OnObjInsert: TacObjListNotifyEvent
read FOnInsert
write FOnInsert;
and object ownership settings. Protected properties allow
derived classes to install handlers for the insertion and dele-
tion notifications.

The private methods ResetList, CloneContents, FreeObjects,
and FreeList manage the list reference. ResetList updates the
list reference and the list and object ownership flags.
CloneContents rebuilds the list to duplicate the contents of
another resulting in a list containing copies of the objects
in the source list, not references to the same objects.
FreeObjects and FreeList are helper methods for freeing all
the objects in the list and the list itself.

The constructor, Create, takes two parameters — a
TStrings object reference and an object ownership flag. The
TStrings reference identifies an existing list object to use as
the list delegate. If the reference is nil, a new TStringList
object is created to serve as the list delegate. The object
ownership flag determines whether or not the list owns the
contained objects.
DECEMBER 1995
The Destroy destructor override frees owned objects and lists
before calling the inherited destructor.

The public methods, AtIndex and AtName, provide access to
the objects in the list. AtIndex returns the object at a specific
index, and AtName returns the object with a specific string
representation.

The UpdateObjectName method updates an object’s string
representation from its AsString property. This method
should be called for any object in the list that is modified in
a way that could potentially affect its string representation.

Most of the remaining public methods are concerned with
list manipulation. Most of these map directly or indirectly
to methods of the TStrings class. In some cases, the
TacObjStringList methods augment the TStrings behavior
with additional error checking and support for notifications
and object ownership. For details, refer to the complete
source code listing.
Delphi INFORMANT ▲ 10

On the Cover

Figure 5: TacObjStringList assignments.
Implementing TacObjStringList
The implementation of TacObjStringList is also a good exam-
ple of building a persistent class. There are five requirements
for a fully functional persistent class:
1) It must be a descendant of TacStreamable.
2) It must override the AssignTo method to support assign-

ment and copy construction.
3) It must override the InitFields method to perform class

specific initialization.
4) It must override the SaveToStream and ReadFromStream

methods.
5) It must be registered if objects will be created directly from it.

In addition, the class should override the GetAsString method
to support string-based list access or display in list controls.

The following discussion approaches these requirements in
the context of the TacObjStringList class. As previously stated,
TacObjStringList is a subclass of TacStreamable.

Figure 4 shows the source listing of the AssignTo method.
First, you must verify that the instance is not being assigned
to itself. This is more than an efficiency issue. Allowing
AssignTo to proceed with itself as the destination object would
result in memory leaks and nasty general protection faults.
The next concern is with the class of the destination object.
At first glance, it might appear that the type checking per-
formed by the as operator when casting the destination from
TPersistent to TacObjStringList would be sufficient to guaran-
tee assignment compatibility. However, the as operator only
requires that the destination object’s class be TacObjStringList
or one of its subclasses. Considering the source object’s class
may also be TacObjStringList or one of its subclasses, this
would allow all the assignments (see Figure 5).

Unfortunately, in cases (A) and (B), the assignment may not be
proper. In both cases, the destination class may include fields
and behaviors unknown to the source class. Therefore, the
implementation of TacObjStringList performs an explicit check
to restrict assignments to the type indicated by case (C). Of
DECEMBER 1995

Figure 4: The TacObjStringList.AssignTo procedure.

procedure TacObjStringList.AssignTo(Dest : TPersistent);
var

DestStringList : TacObjStringList;
begin

if (Dest = self) then Exit;

if ((Dest is TacObjStringList) and
(Self is Dest.ClassType)) then

begin { Assigning to same or superclass }
DestStringList := (Dest as TacObjStringList);
DestStringList.ResetList(DestStringList.FList,True);
DestStringList.CloneContents(self);

end
else

begin { TPersistent will process error }
inherited AssignTo(Dest);

end;
end;
course, subclasses can easily override this behavior as needed.
For valid assignments, the destination object is cast to a
TacObjStringList and the CloneContents method is called to
duplicate the source list.

The InitFields implementation calls the inherited version
and then initializes the private list reference to nil and the
ownership flags to False.

The SaveToStream method saves the count of the objects in
the list to the stream and then iterates through the list, saving
each object with a call to the stream’s SaveObject method. The
ReadFromStream method reverses this process. It reads the
count of the objects in the list from the stream and then cre-
ates each object with a call to the stream’s ReadObject method.

TacObjStringList does not override the GetAsString method.
It’s unlikely that string representations of TacObjStringList
objects will be required.

That’s it. TacObjStringList is now a fully functional persistent
class. I have intentionally not yet registered the class. Registration
is required only for classes used to create actual objects. Because
any given application may or may not create direct instances of
TacObjStringList, the application is responsible for registration.
TacObjStream: Building a Home for Persistent Objects
TacObjStream is the base class for persistent object streams.
Before examining its particulars, it’s important to understand
how TacObjStream organizes data in the stream. Conceptually,
the stream consists of four areas:
1) the Stream Header
2) the User Header
3) the Object Data
4) the Class Table

Figure 6 illustrates this format. The stream and user head-
ers are fixed length areas. More specifically, the size of the
header for any particular stream must remain constant for
the life of the stream, although it may vary from stream to
stream. The stream header begins every stream created
from the TacObjStream class. It includes a signature and
version number for identifying the stream, and an offset to
Delphi INFORMANT ▲ 11

DECEMBER 1995

On the Cover

Figure 6: The TacObjStream
file format.
the class table. TacObjStream
subclasses can define and man-
age the optional user header
area as needed.

The object data area contains
the persistent object data. A 2-
byte class ID, written by
TacObjStream, prefixes each
object’s data. The class ID iden-
tifies the object’s class type indi-
rectly through the class table.
The class table stores the class
type information for each class
represented in the stream. The
class table consists of a counter,
specifying the number of class
entries, followed by the class
entries in the form of <class
name, class id> pairs.
The initial implementation of TacObjStream did not include a
class table. Instead of writing a class ID before each object, it
wrote the class name. Delphi uses a similar procedure when sav-
ing components. However, since each class name can occupy up
to 64 bytes (they are 63 character strings), this scheme can be
space inefficient, especially for streams containing large numbers
of small objects. Performance may also suffer, as it requires a
class type lookup for each object.

The class table implementation avoids these problems and
is more efficient in almost all cases. The class table stores
each referenced class name (just once) along with its asso-
ciated class ID. As a result, the per-object overhead
decreases from a possible 64 bytes to a constant 2 bytes.
Also, reading from the stream requires a class type lookup
only once per class instead of once per object. Although
the class table does add complexity, I think the benefits
more than justify its use.

Figure 7 shows the source listing for the TacObjStream class
interface. TacObjStream includes three private fields. The
FMode field stores the stream’s current access mode. It’s of
type TacObjStreamMode. TacObjStream provides three access
modes: input, output, and append. Input mode is for reading
some or all the objects in a stream, output mode is for saving
an entire stream, and append mode is for adding objects to
the end of an existing stream.

The remaining two fields relate to the stream’s on disk for-
mat. The FHeader field contains the stream header. The
FClassTable field is a reference to the TStringList object that
maintains the in-memory class table.

The Create constructor merely initializes the private fields.
The Destroy destructor override ensures the stream is closed
and the class table string list is freed.
The private methods, SaveStreamHeader and ReadStreamHeader,
manage the stream header. After processing the standard stream
header, these methods call the SaveHeader and ReadHeader
methods, respectively. Subclasses override these protected virtual
methods to define and manage a user header. By default, their
implementation is empty.

The class table is managed by the following private meth-
ods: PrepareClassTable, SaveClassTable, ReadClassTable, and
AddClassRef. The organization of the class table is depen-
dent on the stream’s access mode. The PrepareClassTable
method is responsible for properly configuring the class
table prior to its use.

For input mode streams, the class table is organized as an
unsorted string list of class names ordered by class ID. The pri-
vate ReadClassTable method reads each entry from the stream
and inserts the class name into the class table at a position
determined by the class ID. It also calls Delphi’s FindClass pro-
cedure to determine the class type reference for the class name
and stores that in the entry’s corresponding Objects property.

For output mode streams, the class table is organized as a
sorted string list of class names, each associated with an inte-
ger class ID. The table builds incrementally as objects are
saved to the stream. Each saved object results in a call to the
stream’s AddClassRef method. A call to the object’s ClassName
method returns the class name. If the class name is already in
the table, AddClassRef returns the previously assigned class
ID. If the class name is not in the table, AddClassRef creates a
new class table entry, assigns it the next class ID, and returns
the class ID. The private method, SaveClassTable, appends the
class table to the stream before the stream is closed.

It’s important to realize that ClassName always returns the
class name of the object’s actual class, not of the reference
variable’s class. Specifically, even though AddClassRef sees all
objects passed to it as TacStreamable references, if an object of
class TMyStreamableObject (a subclass of TacStreamable) is
passed, the call to ClassName returns “TMyStreamableObject,”
not “TacStreamable.”

For append mode streams, the class table is initialized by
ReadClassTable, but must be organized as if in output mode.
This ensures the class table is properly updated if new classes
of objects are appended to the stream.

As previously stated, TacObjStream does not implement the
physical stream management. This is left to its subclasses.
Instead, it performs all stream operations through a reference
to Delphi’s abstract stream class TStream. This is similar to
using a TStrings reference in TacObjStringList; it makes it pos-
sible to transparently support multiple types of streams.

TacObjStream declares three abstract protected methods that
define its required internal stream interface. Subclasses must
override these methods to produce a fully working stream
Delphi INFORMANT ▲ 12

On the Cover

Figure 7: The TacObjStream interface source listing.

type
{ Only 63 chars of identifiers are significant }
TacStreamableClassName = string[63];
{ Identifies class of streamed objects }
TacStreamableClassId = Integer;
{ Index into class list }
TacStreamableClassIdx = Integer;

type
TacObjStreamMode =

(
osmClosed, { Stream not open }
osmInput, { For reading only }
osmOutput, { For writing only, starts with

empty stream }
osmAppend { For writing only, starts with

current contents }
);

TacObjStreamModes = set of TacObjStreamMode;

{ Standard stream header. Starts every TacObjStream. }
type

TacObjStreamHeader = record
Signature : array[0..7] of Char;
Version : LongInt;
ClassTableOffset : LongInt;

end;

const
DefaultObjStreamHeader : TacObjStreamHeader =

(
Signature : 'ACSTREAM';
Version : $00000000;
ClassTableOffset : $00000000
);

type { TacObjStream exception classes }
EacObjStream = class(Exception)
{ Base class for TacObjStream Exceptions }
end;

EacObjStreamInvalid = class(EacObjStream)
{ Unexpected stream format, header unrecognized }
end;

EacObjStreamWrongMode = class(EacObjStream)
{ Stream is in the wrong mode for requested operation }
end;

type

TacObjStream = class(TObject)
private

FMode : TacObjStreamMode; { Access mode }
FHeader : TacObjStreamHeader;{ Stream header }
FClassTable : TStringList; { In-memory class

lookup table }
{ Stream header management }
procedure SaveStreamHeader;
procedure ReadStreamHeader;
{ Class table management }
procedure PrepareClassTable(const Mode:

TacObjStreamMode);
procedure SaveClassTable;
procedure ReadClassTable;
function AddClassRef(const Obj: TacStreamable):

TacStreamableClassId;
protected

{ Abstract internal stream interface }
function GetStream: TStream; virtual; abstract;
procedure OpenStream(const Mode: TacObjStreamMode);

virtual; abstract;
procedure CloseStream; virtual; abstract;
{ Error handling }
procedure ValidateStreamMode(const Modes:

TacObjStreamModes);
procedure ObjStreamError(Exc: Exception); virtual;
{ Placeholders for user added headers }
procedure SaveHeader; virtual;
procedure ReadHeader; virtual;

public
{ Construction/Destruction }
constructor Create;
destructor Destroy; override;
{ Opening and closing stream }
procedure OpenForInput;
procedure OpenForOutput;
procedure OpenForAppend;
procedure Close;
{ Save and Read methods for streaming objects }
procedure SaveObject(const Obj: TacStreamable);
function ReadObject(const Obj: TacStreamable):

TacStreamable;
{ Methods used by objects to read/write their data }
procedure SaveBuffer(const Buffer; Count: Longint);
procedure ReadBuffer(var Buffer; Count: Longint);
procedure SaveCStr(const CStr: PChar);
function ReadCStr: PChar;

end;
class for TacStreamable objects. The GetStream method only
needs to return a reference to the actual stream object. This
reference provides access to the actual stream for data inser-
tion and extraction. The other two required methods,
OpenStream and CloseStream, impose a standard protocol for
opening and closing the stream that is not necessarily linked
to the stream’s creation and destruction. This minimizes the
limitations resulting from TacObjStream’s inability to sup-
port simultaneous input and output on an open stream.

The public interface of TacObjStream includes methods for
opening and closing the stream. The OpenForInput,
OpenForOutput, and OpenForAppend open the stream and
prepare it for reading, saving, and appending, respectively.
The Close method closes any open stream.

The SaveBuffer and ReadBuffer methods are provided
mainly for implementing the SaveToStream and
DECEMBER 1995
ReadFromStream methods of TacStreamable subclasses.
Their implementation is trivial. The calls are simply for-
warded to the TStream object returned by GetStream.
SaveCStr and ReadCStr are helper functions that simplify
the handling of C-style, null-terminated strings.

The most interesting methods are SaveObject and ReadObject.
SaveObject writes a persistent object to the stream, and
ReadObject recreates a persistent object from the stream. Because
of the previously discussed infrastructure, the implementation of
SaveObject and ReadObject is relatively simple (see Figure 8).

SaveObject saves the class ID, returned by a call to AddClassRef,
and then saves the object with a call to its SaveToStream method.

ReadObject reads the class ID and determines the associated
class type by using the class ID as an index into the class table.
Since the class type reference is stored as a TObject reference, it
Delphi INFORMANT ▲ 13

On the Cover

Figure 8: The TacObjStream SaveObject and ReadObject functions.

procedure TacObjStream.SaveObject
(const Obj : TacStreamable);

var
ClassId : TacStreamableClassId;

begin
ValidateStreamMode([osmOutput, osmAppend]);

if (Assigned(Obj)) then
begin
{ Get the class ID }
ClassId := AddClassRef(Obj);
{ Save the class ID }
GetStream.WriteBuffer(ClassId, Sizeof(ClassId));
{ Save the object }
Obj.SaveToStream(self);
end;

end;

function TacObjStream.ReadObject
(const Obj : TacStreamable): TacStreamable;

var
ClassId : TacStreamableClassId;
ObjType : TacStreamableClass;
NewObj : TacStreamable;

begin
ValidateStreamMode([osmInput]);

Result := nil;

{ Read class ID and get the corresponding class type
reference }

GetStream.ReadBuffer(ClassId, sizeof(ClassId));
ObjType :=

TacStreamableClass(FClassTable.Objects[ClassId]);

{ Create a new object of the proper class from the
stream data }

NewObj := ObjType.CreateFromStream(self);

if (Assigned(Obj)) then
begin { Assign created object to passed object and

return object }
try

obj.Assign(NewObj);
Result := Obj;

finally
NewObj.Free;
end;

end
else

begin { Just return created object }
Result := NewObj;
end;

end;
must be cast back to a TacStreamableClass reference before it’s
assigned to the local class reference variable, ObjType.
TacStreamableClass is a class reference type that can reference
any class descended from TacStreamable. This cast should
always be valid since all objects saved to the stream must be
instances of TacStreamable subclasses.

A call to the CreateFromStream constructor with ObjType as the
class reference creates a new object from the stream. This call
causes Delphi to create an instance of the actual TacStreamable
subclass referenced by the ObjType variable. Thus, even though
the CreateFromStream constructor is a static method of
TacStreamable, when it calls the virtual ReadFromStream method
DECEMBER 1995
to perform the actual initialization, the call occurs in the context
of the desired class.

At this point, ReadObject could simply return a reference to the
newly created object. However, the current implementation
includes an added degree of flexibility. The ReadObject method
takes a single parameter of type TacStreamable. If nil is passed,
ReadObject returns the created object, as expected. If a valid
object reference is passed, ReadObject calls the object’s Assign
method to update its state from the created object, frees the
created object, and returns the passed object reference. This
added capability circumvents a weakness of ReadObject.
ReadObject always uses the CreateFromStream constructor,
which in turn, relies on the default constructor, Create. Even if
the constructor was virtual, all TacStreamable based classes
would still be limited to a single constructor with a predefined
parameter list. As implemented, if the class of the next object
in the stream is known, the object can be initialized by any
declared constructor before calling ReadObject.
TacFileObjStream: Saving Objects to Disk
In most applications involving persistent objects, the objects are
stored in disk files. TacFileObjStream is a concrete subclass of
TacObjStream for disk file-based streams. Since most of the
functionality is provided by TacObjStream, its implementation
is rather short. Figure 9 shows the complete listing for the class.

The class declares two private fields, FFilename and
FFileStream. FFilename stores the name of the disk file so the
file can be opened and closed as needed. FFileStream is a ref-
erence to the actual TFileStream object created to access the
file associated with the filename.

As required, TacFileObjStream overrides the protected meth-
ods GetStream, OpenStream, and CloseStream. GetStream
returns the FFileStream stream reference. OpenStream creates a
TFileStream object and saves the reference in the FFileStream
field. The desired TacObjStream access mode, passed in as a
parameter, determines the file access mode of the created
stream. CloseStream frees the TFileStream object referenced by
FFileStream and resets the field to nil. The corresponding disk
file is automatically closed by the TFileStream instance before
it’s destroyed.

This class has a single constructor, Create, that takes a filename
as a parameter. It calls the inherited constructor and then saves
the filename in the FFilename field. The inherited destructor,
Destroy, is overridden. It calls the inherited destructor and then
frees the TFileStream instance, if it still exists.
Streams and Persistent Objects in Action
The remainder of this article presents a complete, albeit
somewhat trivial, application that exercises most of the
library. The name of the application is Resource Logger. It
exists solely for periodically logging the system’s resource
status. It optionally tracks free Windows resources, avail-
able memory, and available disk space.
Delphi INFORMANT ▲ 14

On the Cover

Figure 9: The TacFileObjStream class.

type
TacFileObjStream = class(TacObjStream)
private

FFilename : TFilename;
FFileStream : TFileStream;

protected
{ Required internal stream interface }
function GetStream: TStream; override;
procedure OpenStream(const Mode: TacObjStreamMode);

override;
procedure CloseStream; override;

public
{ Construction/Destruction }
constructor Create(const Filename: TFilename);
destructor Destroy; override;
{ Properties }
property Filename: TFilename

read FFilename;
end;

implementation

{ ************** TacFileObjStream ******************* }

constructor TacFileObjStream.Create
(const Filename : TFilename);

begin
inherited Create;
FFilename := Filename;

end;

destructor TacFileObjStream.Destroy;
begin

inherited Destroy;
{ Postponed stream Free so TacObjStream can close

it up, if needed }
FFileStream.Free;

end;

function TacFileObjStream.GetStream: TStream;
begin

Result := FFileStream;
end;

procedure TacFileObjStream.OpenStream
(const Mode : TacObjStreamMode);

var
StreamFileMode : Word;

begin
case Mode of

osmInput : StreamFileMode :=
fmOpenRead or fmShareDenyWrite;

osmOutput : StreamFileMode := fmCreate;
osmAppend : StreamFileMode :=

fmOpenReadWrite or fmShareDenyWrite;
end;

FFileStream := TFileStream.Create(Filename,
StreamFileMode);

end;

procedure TacFileObjStream.CloseStream;
begin

FFileStream.Free;
FFileStream := nil;

end;

Figure 10 (Top): The Resource Logger form at run-time. Figure 11
(Bottom): Resource Logger class hierarchy.
The application consists of a single form (see Figure 10). A
list box displays the logged entries and a group of check boxes
provides control over logging for each type of resource. The
three command buttons start and stop logging, clear the log,
and summarize the logged entries.
DECEMBER 1995
Figure 11 shows the relevant class hierarchy for the applica-
tion. The TLogItem subclass of TacStreamable is the base class
for all types of log entries. A distinct subclass of TLogItem is
declared for each of the three types of resources. TOptions is
another subclass of TacStreamable used for saving the logging
options. The TLog class is a simple subclass of TacObjStringList
that adds a default array property for accessing the log items
with array-like syntax. While active, the application manages
the log with an instance of TLog, referencing the list associated
with the form’s list box. The TLogStream subclass of
TacFileObjStream manages the application’s data file.

All the application-specific persistent classes are declared and
implemented in the EXAMPLE unit. The implementations
are all similar. Figure 12 shows the TMemoryLogItem class
source listing as an example.

The TLogStream class is an example of subclassing
TacFileObjStream to add a user-defined stream header (see
Figure 13). The SaveHeader method override saves the appli-
cation specific signature, and the ReadHeader method over-
ride reads the signature and verifies it. ReadHeader raises an
exception if the signature is invalid.

The EXAMPLE unit registers the TResourceLogItem,
TMemoryLogItem, TDiskLogItem, TOptions, and TLog classes
in its initialization section. Only objects of these five classes
are instantiated and streamed.

The main form unit contains all the application’s major func-
tionality. Up to this point, the discussion has focused on
implementing the persistent and stream classes. The remainder
examines the form unit as an illustration of using the classes.
Delphi INFORMANT ▲ 15

On the Cover

Figure 12: The TMemoryLogItem class.

type
{ TMemoryLogItem handles memory usage log entries. }
TMemoryLogItem = class(TLogItem)
private

FFreeSpace : LongInt; { Amount of free memory (KB) }
FLargestBlock : LongInt; { Size of largest available

block (KB) }
protected

{ TPersistent overrides }
procedure AssignTo(Dest: TPersistent); override;
{ TacStreamable overrides }
procedure InitFields; override;
function GetAsString: string; override;
procedure SaveToStream(Stream: TacObjStream);

override;
procedure ReadFromStream(Stream: TacObjStream);

override;
public

{ Properties }
property FreeSpace: LongInt

read FFreeSpace;
property LargestBlock: LongInt

read FLargestBlock;
end;

implementation

procedure TMemoryLogItem.AssignTo(Dest: TPersistent);
begin

if ((Dest is TMemoryLogItem) and
(Self is Dest.ClassType)) then
begin
inherited AssignTo(TLogItem(Dest));
with Dest as TMemoryLogItem do

begin
FFreeSpace := self.FFreeSpace;
FLargestBlock := self.FLargestBlock;

end;
end

else
begin

inherited AssignTo(Dest);

end;
end;

procedure TMemoryLogItem.InitFields;
begin

{ Allow TLogItem to initialize }
inherited InitFields;

FFreeSpace := GetFreeSpace(0) div 1024;
FLargestBlock := GlobalCompact(0) div 1024;

end;

procedure TMemoryLogItem.SaveToStream(Stream:
TacObjStream);

begin
{ Allow TLogItem chance to save }
inherited SaveToStream(Stream);

Stream.SaveBuffer(FFreeSpace,SizeOf(FFreeSpace));
Stream.SaveBuffer(FLargestBlock,SizeOf(FLargestBlock));

end;

procedure TMemoryLogItem.ReadFromStream(Stream:
TacObjStream);

begin
{ Allow TLogItem chance to read }
inherited ReadFromStream(Stream);

Stream.ReadBuffer(FFreeSpace,SizeOf(FFreeSpace));
Stream.ReadBuffer(FLargestBlock,SizeOf(FLargestBlock));

end;

function TMemoryLogItem.GetAsString: string;
begin

{ Get Timestamp string from TLogItem }
Result := inherited GetAsString;

{ Append memory descriptions }
AppendStr(Result,' Mem ');
AppendStr(Result,Format(' Free[%dKB]',[FreeSpace]));
AppendStr (Result,Format (' Largest[%dKB]',[LargestBlock]));

end;
The form class declares three private fields. The FOptions
field is a reference to the TOptions object used to save the
state of the logging options. The FLog field is a reference
to the TLog object used to contain and manage the active
log entries. The FLogStream field is a reference to the
TLogStream object used to manage the application data
file. All three objects are created in the FormCreate method
and freed in the FormDestroy method.

The Start Logging button toggles logging on and off.
When logging is enabled, a Timer component triggers a
periodic event, and log entries for the selected resources
are created and added to the log with a call to FLog.Add.

The Clear Log button clears all entries from the log with a
call to FLog.DeleteAll. Since the list owns the log entry
objects, it automatically frees them.

The Summarize button reports the maximum usage for each
resource. This button’s handler, BtnSummarizeClick, demon-
strates iteration of a TacObjStringList instance and assignment of
TacStreamable objects.
DECEMBER 1995
The application saves its option settings and the active log
entries into a single stream. The SaveLog and ReadLog meth-
ods are responsible for the stream management. Figure 14
shows their source listing.

ReadLog opens FLogStream for input, calls the ReadObject
method twice (once for the options object and once for the
list object), and then closes FLogStream. Since both objects
were previously created, their references are passed to
ReadObject. As discussed earlier, this alternative use updates
the existing objects instead of creating new ones. For the
options object, this is mainly for convenience, as it avoids
having to free the current options object. Regarding the log,
however, it’s critical. FLog uses the form’s list box as its stor-
age list. Freeing the FLog object and letting ReadObject create
a new one would break the association.

SaveLog is nearly identical to ReadLog. The only differences
are that it opens FLogStream for output and calls SaveObject
in place of ReadObject. In both cases, the list object referenced
by FLog handles reading and saving the individual log entries,
regardless of their specific class.
Delphi INFORMANT ▲ 16

DECEMBER 1995

On the Cover

type
{ TLogStream represents the log data file }
TSignature = string[6];
TLogStream = class(TacFileObjStream)
private

FSignature : TSignature;
protected

procedure ReadHeader; override;
procedure SaveHeader; override;

end;

implementation

const
LOG_SIGNATURE : TSignature = 'LOGDAT';

procedure TLogStream.ReadHeader;
begin

ReadBuffer(FSignature, SizeOf(FSignature));
{ Throw exception if invalid signature }
if (FSignature <> LOG_SIGNATURE) then

begin
raise Exception.Create('Unrecognized data file');

end;
end;

procedure TLogStream.SaveHeader;
begin

FSignature := LOG_SIGNATURE;
SaveBuffer(FSignature, SizeOf(FSignature));

end;

Figure 13 (Top): The TLogStream class. Figure 14 (Bottom):
TMainForm’s SaveLog and ReadLog procedures.

{ ReadLog reads the options and log from the data file }
procedure TMainForm.ReadLog;
begin

if (FileExists(FLogStream.Filename)) then
begin
with FLogStream do

begin
OpenForInput;
ReadObject(FOptions);
ReadObject(FLog);
Close;

end;
end;

end;

{ SaveLog saves the options and the log to the data file }
procedure TMainForm.SaveLog;
begin

with FLogStream do
begin

OpenForOutput;
SaveObject(FOptions);
SaveObject(FLog);
Close;

end;
end;
Conclusion
The TacStreamable, TacObjStringList, TacObjStream, and
TacFileObjStream classes provide the minimum functionality for a
useful persistent object library. For many applications, this func-
tionality may be sufficient. For others, it should provide a reason-
able starting point for more sophisticated implementations.

There are many enhancements to consider. TacObjStream
could be extended to support simultaneous reading and writ-
ing, or random object access. The accompanying source code
includes a TacObjStream subclass for memory-based streams.
Support for other types of streams might also be useful.
Iterators for TacObjStringList will be my next enhancement. I
would also like to have other types of object containers, such
as stacks and queues.

Whether you use the library as-is or as a starting point for
your own, there are no more excuses for avoiding persistent
objects and streams in your Delphi applications. ∆

References
• Booch, Grady, Object-Oriented Analysis and Design, The

Benjamin/Cummings Publishing Company, Inc., 1994.
• Coplien, James O., Advanced C++, Addison-Wesley

Publishing Company, 1992.

The demonstration application referenced in this article is avail-
able on the 1995 Delphi Informant Works CD located in
INFORM\95\DEC\DI9512AC.
Delphi INFORMANT ▲ 17

Alan Ciemian is a contract programmer and software developer specializing in Windows
development using C++, Delphi, and Paradox for Windows. He can be reached on
CompuServe at 70134,611 or on the Internet at 70134.611@compuserve.com.

DECEMBER 1995

Informant Spotlight
Delphi / Object Pascal

By Douglas Horn

Delphi MRU
Adding a Shortcut to Your Most Recently Used Files
I t’s a familiar feature in Windows programming — a section of the File menu
that lists the last files accessed by an application. Clicking on any of these file-
names opens the corresponding file immediately, allowing users to quickly pick

up where they left off. These MRU (or most recently used) lists are popular time
savers, and are available in most commercial Windows applications (see Figure 1).
Unfortunately, MRU lists are not standard in Delphi — you must create them.
In a previous issue we covered integrating .INI files into Delphi appli-
cations. [For more information regarding .INI files, see Douglas Horn’s
article “Initialization Rites” in the August 1995 Delphi Informant.]
MRU lists are a natural extension of this topic because they use .INI
files to store the list of most recently used files between application ses-
sions. This article illustrates how to include MRU lists in new or exist-
ing applications with minimal programming.
Figure 1: The Microsoft Excel
File menu showing typical
placement and appearance of
MRU list items.
Starting Off
MRU lists can be added just as easily to new or existing applica-
tions. To illustrate this, we’ll add an MRU list to one of the sample
applications that ships with Delphi.

The text editor sample application, described in Chapter 10 of the
Delphi User’s Guide, is a good introduction to Multiple Document
Interface (MDI) applications. It’s not necessary to perform the tutorial
to understand this article, but any reader with questions about program-
ming MDI applications should use it. The completed text editor appli-
cation, TEXTEDIT, is in the \DELPHI\DEMOS\DOC\TEXTEDIT
directory (assuming the default directories were used at Delphi installa-
tion time).

There are five basic steps required to add an MRU list to an
application:
1) Add the MRU list objects.
2) Manage the .INI file.
3) Update the MRU list.
4) Display the MRU list.
5) Open files from the MRU list.
Delphi INFORMANT ▲ 18

Informant Spotlight
Adding MRU List Objects
To create an MRU list, you must add two types of objects to an
application: the menu items to access the list, and the list itself.
The menu items are any number of blank items positioned prop-
erly on the main menu. This sample application uses four,
because it’s the standard number and is easy to work with.
However, a list can hold up to nine items. In some Windows
applications, such as Microsoft Word 6.0 for Windows, the user
can configure the number of MRU items. Using more than nine
is possible, but not recommended, because it makes the menus
long and the program runs out of single-digit numbers to use as
menu shortcut keys.

The proper position of the MRU list on a menu is under the
File menu group, above Exit, in its own subsection. Mnemonic
shortcut keys for MRU list items are always listed in numerical
order (beginning with 1), corresponding to the number of MRU
items (again, see Figure 1).

To add the MRU menu items to TEXTEDIT, first open the menu
editor for the application’s main (MDIParent) form, FrameForm.
Starting just below the lowest separator (at Exit), insert five new
menu items. From top to bottom, name these items MRU1,
MRU2, MRU3, MRU4, and MRUSeparator. Leave the captions
for items MRU 1 through 4 blank. These will be filled by code at
run-time. The caption for MRUSeparator should be set to a
hyphen (-) to create a menu separator line. Set the Tag property
of the items as shown in Figure 2.

When the menu items on the MDI parent form (FrameForm) are
complete (see Figure 3), repeat the process on the application’s
MDI child form (EditForm) using the same names and proper-
ties. This does not create a conflict, because although the items
are merged at run-time, they exist on different menus.
DECEMBER 1995

Figure 2 (Left): Setting the Tag
properties for individual lines in
our example.
Figure 3 (Bottom): New MRU
list menu items added to the
FrameForm main menu via the
Menu Editor.

Name Caption Tag

MRU1 blank 0

MRU2 blank 1

MRU3 blank 2

MRU4 blank 3

MRUSeparator - 0
The MRU list is a TStringList component that maintains a list of
MRU files while the application is running. To add this list, first
declare the MRUList variable under FrameForm’s public part of
the interface section.

public
MRUList: TStringList;

This allows access by the application’s other form, EditForm.

Now that MRUList is declared, it must be put into action. Since it
will be active for the life of the application session, it should be
created in the OnCreate event when the application starts.
MRUList is a global variable. It will be accessible throughout the
application and automatically freed when the application is closed:

procedure TFrameForm.FormCreate(Sender: TObject);
begin

MRUList := TStringList.Create;
end;
Managing the .INI File
The container for the MRU list (the StringList object, MRUList)
only contains its contents while the application is running.
Between program sessions, it stores the list to an .INI file.

The best time to load values into MRUList is when the list is creat-
ed. Since this application uses four items, a loop should be added to
the FormCreate procedure to read four values from the MRU section
of the .INI file, TEXTEDIT.INI (in the C:\WINDOWS directory).
They should then be added to the string list. If the .INI file does
not exist, it’s created automatically, and blank values are added to
the list. Figure 4 shows the updated FormCreate procedure.

The FormCreate procedure loads the contents of the .INI file into
the MRUList string list at startup. To have anything to load, howev-
er, the application must save the contents of the list upon closing.
To accomplish this, the FormDestroy procedure is made similar to
FormCreate, except FormDestroy (see Figure 5) copies the contents
of the string list back to the .INI file for storage (see Figure 6) until
the program is run again.

Finally, for Delphi to access the .INI file (and for the application
to run), IniFiles must be added to the uses statement in the
interface section of the FrameForm code:

uses WinTypes, WinProcs, Classes, Graphics, Controls,
Printers, Menus, MDIEdit, Dialogs, Forms, IniFiles;
Updating the List
The MRU list now exists and can be opened and saved with the
application. It must also be updated periodically as new files are
used. Traditionally, MRU lists contain the names of all files
opened or saved, with the most recently used file at the top. To
keep the list current, a procedure must be created to update it,
and then referenced every time a file is opened or saved.

The procedure, MRUUpdate (see Figure 7), limits the list to
four items and prevents duplicate entries. First, it loops through
Delphi INFORMANT ▲ 19

Informant Spotlight

Figure 7: The MRUUpdate procedure.

procedure TFrameForm.MRUUpdate(Sender: TObject;
const AddFileName: String);

var
Index: Integer; { Declare index variable }

begin
Index := 0;
{ Compare AddFileName to MRUList items }
while Index < (MRUList.count - 1) do

if AddFileName = MRUList[Index] then
{ If already there, delete each occurrence }
MRUList.delete(Index)

else
Index := Index + 1;

while MRUList.count > 3 do
MRUList.delete(MRUList.Count - 1);

while MRUList.count < 3 do
MRUList.add('');

{ Add fourth item to the top }
MRUList.Insert(0,AddFileName);

end;

Figure 6: TEXTEDIT.INI showing the newly cre-
ated .INI file and its saved contents.

Figure 4 (Top): The FormCreate procedure reads MRU information
from the .INI file. Figure 5 (Bottom): The FormDestroy procedure.

procedure TFrameForm.FormCreate(Sender: Tobject);
var

AppIni: TIniFile; { Declare IniFile variable }
Index: Integer; { Declare loop Index variable }

begin
MRUList := TStringList.Create; { Create link to IniFile }
AppIni := TIniFile.Create('TEXTEDIT.INI');
for Index := 0 to 3 do;

{ Add items from INI File to MRU list }
MRUList.Add(AppIni.ReadString('MRU',IntToStr(Index),'');

AppIni.Free; { Free IniFile link from memory }
end;

procedure TFrameForm.FormDestroy(Sender: Tobject);
var

AppIni: TIniFile;
Index: Integer;

begin
AppIni := TIniFile.Create('TEXTEDIT.INI');
for Index := 0 to 3 do;
{ Write contents of MRU list to .INI file }
AppIni.WriteString('MRU',IntToStr(Index),MRUList[Index]);
AppIni.Free;

end;
the items in the
TStringList
object, MRUList,
and compares
each to the name
of the file being
opened or saved,
AddFileName. If
an entry matches,
it is deleted from
the MRU list

array. When the procedure has looped through all the items in
the TStringList object, it does some housekeeping to ensure the
MRU list contains exactly three objects, then adds the new,
fourth object (AddFileName) to the top of the list.

MRUUpdate is called when a file is opened or saved.
According to de facto standards for MRU lists, new files are
not added to the list until they are assigned a filename and
saved. Likewise, closed files are not added to the list unless
they are saved.

To perform this, the MRUUpdate must be called from the applica-
tion’s Open and Save procedures. In the sample TEXTEDIT appli-
cation, these procedures are TEditForm.Open and
TEditForm.Save1Click. The Open procedure receives a filename
from the OpenDialog procedure called in TFrameForm.OpenChild.
By adding the line:

FrameForm.MRUUpdate(Self,Filename);

before the procedure’s end keyword, we can tell the procedure to
update the MRU list by using the open file’s name as the new
addition to the list.
DECEMBER 1995
Adding the same statement at the same place in the
TEditForm.Save1Click procedure ensures the MRU list is also
updated when a file is saved. In TEXTEDIT, the SaveAs proce-
dure calls the Save procedure. In applications structured differ-
ently, the SaveAs event handler must also reference the
MRUUpdate procedure.
Displaying the List
The program now saves, loads, and updates the values in the
MRU list, but it still does not display them. Displaying the
MRU list menu items in an MDI application requires two iden-
tical procedures. In a Single Document Interface (SDI) applica-
tion, only a single event handler is required. With multiple doc-
uments, however, both the parent and child forms have their
own menus. When these menus are merged, the child form is
opened and the parent menu becomes invisible. But when a
child form is not open, accessing the form’s menu produces an
error event. Therefore, the procedure for displaying the MRU
menu items must be precise.

The MRUDisplay procedure is quite simple. The caption of each
menu item is set to the filename of the corresponding MRU list
item. An ampersand, a number, and a space (e.g. &1) precede the
filename, telling Delphi to underline the number so it can call
the file. If a particular MRU menu item is blank, it will not dis-
play. If MRU1 contains a filename, the separator line is visible.

The most efficient way to set the Visible property to True if the
menu item is not blank, is to use the compound statement:

MRU1.Visible := (MRUList[0] <> '');

This sets the Visible property to True if the List item contains a
filename (i.e. if MRUList[x] is not blank). Otherwise it sets the
property to False, hiding the item.

The code for TFrameForm.MRUDisplay is shown in Figure 8.
The TEditForm.MRUDisplay procedure is identical, except it’s in
the EditForm code, and references the MDI child menu items.
Delphi INFORMANT ▲ 20

Informant Spotlight

Figure 8: The MRUDisplay procedure.

Figure 9 (Top): The OpenChild procedure.
Figure 10 (Bottom): The EditForm.Save1Click procedure.

procedure TFrameForm.MRUDisplay(Sender: TObject);
begin

MRU1.Caption := '&1 ' + MRUList[0];
MRU1.Visible := (MRUList[0] <> '');
MRUSeparator.Visible := MRU1.Visible;
MRU2.Caption := '&2 ' + MRUList[1];
MRU2.Visible := (MRUList[1] <> '');
MRU3.Caption := '&3 ' + MRUList[2];
MRU3.Visible := (MRUList[2] <> '');
MRU4.Caption := '&4 ' + MRUList[3];
MRU4.Visible := (MRUList[3] <> '');

end;

procedure TFrameForm.OpenChild(Sender: TObject);
var

EditForm: TEditForm;
begin

if OpenFileDialog.Execute then
begin

EditForm := TEditForm.Create(Self);
EditForm.Open(OpenFileDialog.Filename);
EditForm.Show;
EditForm.MRUDisplay(Sender); { Update MRU menu items }

end;
end;

procedure TEditForm.Save1Click(Sender: TObject);
{ ... listing partially omitted }

begin
if (Filename = '') or IsReadOnly(Filename) then

SaveAs1Click(Sender)
else

begin
CreateBackup(Filename);
Memo1.Lines.SaveToFile(Filename);
Memo1.Modified := False;
FrameForm.MRUUpdate(Sender,Filename);
MRUDisplay(Sender); { Display MRU List (EditForm) }

end;
end;
The procedure would be called:

procedure TEditForm.MRUDisplay(Sender: TObject)

Normally, two identical procedures would not be necessary; one
could call the other to reduce code size. However, this case is an
exception. Because the MDI parent form cannot “see” the MDI
child forms (except when creating them) it cannot update menu
items on these forms. Hence, the duplicate procedures.

Although the routines are straightforward, they must be called at
the correct time to display the current MRU list and avoid possi-
ble errors. The EditForm version is the busiest, as the EditForm’s
menu is displayed whenever files are open. The FrameForm ver-
sion of the menu is only called when the application is first acti-
vated, and when an MDI child form is closed. This updates the
parent form’s menu in case the child form being closed is the last
one and the parent form’s menu will be displayed again. To
enable these functions, add:

MRUDisplay(Sender);

to the last line of the FrameForm.FormCreate procedure, and add:

FrameForm.MRUDisplay(Sender);

to the last line of the EditForm.FormClose procedure.

The EditForm.MRUDisplay procedure is called by the
FrameForm.OpenChild procedure by adding the statement:

EditForm.MRUDisplay(Sender);

at the last line of the procedure. This procedure defines and
creates the child form. Since EditForm is declared as a local
variable in this FrameForm procedure, the procedure can call
EditForm.MRUDisplay, even though it is invisible to the rest of
the program. The complete OpenChild procedure is shown in
Figure 9. (Note that all lines but:

EditForm.MRUDisplay(Sender);

already exist in the TEXTEDIT sample application.)

The same statement:

EditForm.MRUDisplay(Sender);
DECEMBER 1995
must also be added to the end of the EditForm.Save1Click
procedure as shown in Figure 10. This allows the program to
display the current MRU information when a file has been
saved and the MRU list is updated.

Finally, to update the MRU menu items in MDI child windows,
the application must be instructed to call EditForm.MRUDisplay
whenever the focus switches between forms. Otherwise, each child
window displays the MRU list items as they were when the form
was last updated, and not necessarily the current information. To
enable this display update, set the EditForm’s OnActivate event to
MRUDisplay, using the Events Page of the Object Inspector.
Opening Files from the MRU List
The last task in adding an MRU list to an application is actually
opening the files with the click of a button. The TEXTEDIT
application can already open a child window using the
FrameForm.OpenChild procedure. This procedure obtains the
name of the file to open from an Open File common dialog
box. Since the MRU list already contains the name of the
desired file, the dialog box is unnecessary.

The FrameForm.MRUOpenChild procedure (see Figure 11) must
only reference the MRU list and obtain the filename associated
with the selected MRU menu item. To do this, the procedure uses
the Sender’s Tag property (set when the MRU menu items were
created in step one), and assumes the Sender is a TMenuItem.

Once this event handler is written, it should be set as the OnClick
event handler for all four MRU menu items (i.e. MRU1, MRU2,
MRU3, and MRU4) on the FrameForm main menu. The corre-
sponding event handler for the EditForm MRU menu items should
Delphi INFORMANT ▲ 21

procedure TFrameForm.MRUOpenChild(Sender: TObject);

var

EditForm: TEditForm;

Index: Integer;

begin

{ Set Index using Sender.Tag }

Index := TMenuItem(Sender).Tag;

if MRUList[Index] <> '' then

begin

EditForm := TEditForm.Create(Self);

EditForm.open(MRUList[Index]);

EditForm.show;

EditForm.MRUDisplay(Sender);

end;

end;

Figure 11 (Left): The FrameForm.MRUOpenChild procedure. Figure 12 (Right): The TEXTEDIT application with its new MRU list
displayed.

Informant Spotlight
be called MRUClick. The procedure EditForm.MRUClick references
FrameForm.MRUOpenChild:

procedure TEditForm.MRUClick(Sender: TObject);
begin

FrameForm.MRUOpenChild(Sender);
end;
Douglas Horn is a free-lance writer and computer consultant in Seattle, WA. He spe-
cializes in multilingual applications, particularly those using Japanese and other Asian
languages. He can be reached via e-mail at internet:horn@halcyon.com.
Ready to Run
The MRU list in TEXTEDIT.DPR is now ready to run (see
Figure 12). It will keep track of the files and allow those used last
to be instantly opened.

It should now be easy to add an MRU list to any new or existing
Delphi application by following these steps. First, add the menu
objects and string list to the application. Next, add simple proce-
dures for moving data back and forth between the string list and
an .INI file. Then, write an event handler to update the string list
DECEMBER 1995
as files are opened and saved. Add procedures to display the con-
tents of the string list to the menu items on both parent and child
forms. Finally, include a simple event handler to open files from
the string list when the corresponding menu item is clicked.

So there you have it! Five steps to a more professional, user-
friendly application. ∆

The demonstration project referenced in this article is available on
the 1995 Delphi Informant Works CD located in
INFORM\95\DEC\DI9512DH.
Delphi INFORMANT ▲ 22

DECEMBER 1995

Useless Stuff
Delphi / Object Pascal

By David Faulkner

Upping the Ante
Building a Poker Game with the TCardDeck Component

Figure 1: This video poker game wa
TCardDeck component. The first scree
onto a pair of nines and then pressed
a pair of aces is added to the held ca
smiles.
Oh sure, Delphi Informant is full of useful, business-like, get-the-job-done-
better-and-faster components. Boring stuff. Now for some fun.

This article presents a playing card component, TCardDeck, and a video poker game (see Figure 1)
easily made from that component. We’ll start by learning how to use the component, and then deal
with some technical details of its implementation. (And if you download this component, you could
try cutting in on the lucrative Solitaire market for Windows 95.)
s built using the
n shows the player held
 the Deal button. When
rds, Delphi flashes
Installing the CardDeck Component
To use the CardDeck component, download the source code and place
it in a directory (e.g. \DELPHI\CARDDECK). The necessary files are
shown in Figure 2.
File Function

CARDDECK.PAS The source code.

CARDDECK.RES A resource file with the
cardface bitmaps.

CARDDECK.DCR A Delphi resource file with
the CardDeck’s Component
Palette icon.

Figure 2: The Delphi files necessary to get you
onto the playing table.
With the source code down-
loaded, you can install the
component. To do this, start
Delphi, open the Options
menu, and select Install
Components to display the
Install Components dialog box.
Click the Add button and sup-

ply the path and name of CARDDECK.PAS. If you don’t have a component
named TCardDeck, Delphi adds CardDeck to the Installed Units list. Click
the OK button. Delphi compiles the new component and places it on the
DI (Delphi Informant) tab of the Component Palette (see Figure 3).
Using the TCardDeck
Start a new project and drop a CardDeck component on it. The visual repre-
sentation of TCardDeck is an Ace of Spades, 71 pixels wide and 96 pixels tall
(see Figure 4).

TCardDeck is a descendant of TGraphicControl (as is TLabel and
TShape) so you are probably familiar with its properties. Two new
properties introduced by this component are Stretch and Value. Stretch
is a Boolean type, and when it’s set to True the card face bitmap is
stretched to TCardDeck’s height and width. When False, the card face
bitmap is always 71 x 96 pixels, regardless of the component’s height
and width properties.
Delphi INFORMANT ▲ 23

Figure 3 (Top): The TCardDeck component on the DI page of the
Component Palette. Figure 4 (Bottom): The component on a form.

Useless Stuff
The Value property is an integer that represents the card face dis-
played. 1 is the Ace of Spades, 2 is the 2 of Spades, 14 is the Ace
of Hearts, 27 is the Ace of Clubs, 40 is the Ace of Diamonds,
and 52 is the King of Diamonds. You can work with numbers or
a set of constants that adds readability to programs using
TCardDeck components. Figure 4, for example, shows the con-
stant cdAceOfSpades in the Object Inspector.

The last 10 “cards” are Card 53 (cdJoker), the Joker, and cards 54
to 62 (cdCardBack1..cdCardBack9) with bitmaps representing the
back of each card.
TCardDeck Utility Functions
The ability to display card faces on a form makes it easy to
write card games, but TCardDeck goes further with some utility
functions. When a TCardDeck component is placed on a form,
Delphi automatically includes the CARDDECK.PAS unit in
your form’s unit. By using TCardDeck, you automatically have
access to the functions shown in Figure 5.

There is no built-in help for these functions or the extra proper-
ties defined by TCardDeck. Therefore, you may want to keep the
source code open on an editor tab. To do this, select File | Open
File from Delphi’s menu. Then, select CARDDECK.PAS from
the appropriate directory. You’ll find a component’s source code
is as good as any help system.

We often have several tabs open in the editor to Delphi’s
units (buy the VCL source if you don't have it). Note that
although the File Open dialog box starts with a *.PAS filter,
the editor can be used to view any text file (such as those
written for an import routine, or HTML source code that
may be interfaced).
DECEMBER 1995
TCardDeck Informant
When writing a component, you must first decide which existing
component to descend from. In TCardDeck’s case, descending
from TGraphicControl seems logical. It already has some essential
properties, such as Position and Size, and has a canvas that makes
drawing easy. Additionally, TGraphicControl has events such as
Paint and drag-and-drop support that are necessary in the
TCardDeck component.

TCardDeck was created with the Component Expert (see Figure 6).
To open this dialog box, select File | New Component. When you
press the OK button, Delphi builds a unit with the necessary class
declaration and register procedure. Now, complete the code to
make the component functional.
Constants
CARDDECK.PAS begins by declaring many constants. Each card
name, color, and card are assigned numeric values. A number of
subrange types are created to simplify programming with
TCardDeck. For example, the constants:

cdSpades = [1..13];
cdHearts = [14..26];
cdClubs = [27..39];
cdDiamonds = [40..52];
cdBlackCards = [1..13,27..39];
cdRedCards = [14..26,40..52];

make it easy to determine a card’s color or suit.

A set of TCardEntries is also configured as a constant. It’s
declared as:

type
TCardEntry = record

Value: cdCardDeck;
Name: PChar;

end;
const

Cards: array[1..62] of TCardEntry =
((Value: cdAceofSpades;

Name: 'cdAceofSpades'),
Value: cd2ofSpades;
Name: 'cd2ofSpades'),

Using the constant Cards array, it’s simple to map the string
version of a card’s value to its integer value. This is necessary
to set up TCardDeck’s Value property which accepts a string or
an integer.
TCardDeck.Paint
TCardDeck’s most important feature is its ability to display
bitmaps that represent card faces. To do this, TCardDeck over-
rides TGraphicComponent’s Paint procedure:

type
TCardDeck = class(TGraphicControl)

protected
{ Protected declarations }
procedure Paint; override;
Delphi INFORMANT ▲ 24

Figure 5: Each function used
by TCardDeck.

Useless Stuff

Figure 6: The Component Expert dialog box.

Function Description

function IsCardRed(Value: cdCardDeck) : Boolean; Accepts a card value. Returns True if card is red, otherwise False.

function IsCardBlack(Value: cdCardDeck) : Boolean; Accepts a card value. Returns True if card is black, otherwise False.

function IsFaceCard(Value: cdCardDeck) : Boolean; Accepts a card value. Returns True if card is a face card,
othewise False.

function AreCardsSameColor(Value1, Accepts two card values. Returns True if cards are the same color,
Value2: cdCardDeck) : otherwise False.
Boolean;

function AreCardsSameSuit(Value1, Accepts two card values. Returns True if cards are the same suit,
Value2: cdCardDeck) : otherwise False.
Boolean;

function AreCardsSameValue(Value1, Accepts two card values. Returns True if the cards have the same
Value2: cdCardDeck) : face value and the same color, otherwise False. For example, if
Boolean; the 2 of spades and 2 of diamonds are passed, True is returned.

function CardColor(Value: cdCardDeck) : integer; Returns an integer representing the color of the card passed to it.
CARDDECK.PAS defines the following constants for card colors:
cdBlack = 1;
cdRed = 2;

function CardSuit(Value: cdCardDeck) : integer; Returns an integer representing the suit of the card passed to it.
CARDDECK.PAS defines the following constants for card suits:
cdSpade = 1;
cdHeart = 2;
cdClub = 3;
cdDiamond = 4;

function CardValue(Value: cdCardDeck) : integer; Returns an integer representing the face value of the card passed
to it. The number 1 represents an Ace, 2 represents a 2, and 13
represents a King.

procedure TCardDeck.Paint;
var

BitMap:TBitMap;
FacePChar: array [0..25] of char;

begin
strpcopy(FacePChar,CardToString(Value));
BitMap := TBitMap.create;
try

BitMap.handle := LoadBitMap(HInstance,FacePChar);
if not BitMap.empty then
begin

if Stretch then
Simply stated,
whenever
Windows requests
TCardDeck to
paint itself, the
TCardDeck.Paint
procedure is called.
See Figure 7 for an
abbreviated ver-
sion. The code not
Figure 7: An abbreviated version of the TCardDeck.Paint procedure.

canvas.stretchdraw(clientrect,BitMap)
else

Canvas.draw(0,0,BitMap);
end;

finally
BitMap.free;

end;
end;
shown paints the corners of the cards the same color as the
background. The entire code listing for the project begins on
page 27.

Some important information should be noted within this proce-
dure. Once the variable BitMap is created, the code uses a
try..finally block. This protects the component from leaking
memory if a GPF occurs. The BitMap.Create command (or any
Create command) allocates memory. As a component designer,
you must free this memory, even if the component causes an
exception during processing. In this case, if something goes
wrong while painting the component, the finally clause calls
BitMap.Free to release the allocated memory.

The bitmaps for card faces are stored in CARDDECK.RES, a stan-
dard Windows resource file. With the Borland Resource Editor or
Delphi’s Image Editor, you can view and modify bitmaps outside
Delphi. To make resources in an .RES file available at run-time, a
compiler directive is necessary. It instructs Delphi to include the
.RES file in the .EXE file. For example, TCardDeck uses the:

{$R CARDDECK.RES}

compiler directive. Although it resembles one, it’s not a com-
ment. To learn more about the many compiler directives, type
DECEMBER 1995
the dollar symbol ($) on a blank line in the code editor and
press 1. You can now surf the help system for information.
With CARDDECK.RES included in the .EXE, this code is used
to extract a bitmap from the resource file:

BitMap.handle := LoadBitMap(HInstance,FacePChar);

The LoadBitMap procedure is actually a Windows API call.
Since the WINPROCS.PAS unit wraps many Windows API
calls, including this one, calling LoadBitMap is relatively simple.
The HInstance variable is a global variable available in Delphi
programs. In the call above, HInstance tells Windows which
“instance” of a program is running, and to find the bitmap in
the correct .EXE. The FacePChar is a PChar version of a
CardDeck.Value. The bitmaps in the resource files are identified
by these values, i.e. cdAceOfSpades, cd2OfSpades, etc.
Delphi INFORMANT ▲ 25

Useless Stuff
With the bitmap loaded, this code paints the screen:

if Stretch then
canvas.stretchdraw(clientrect,BitMap)

else
canvas.draw(0,0,BitMap);
The cdCardDeck Custom Property Editor
The next fun part of the CardDeck component is the custom
property editor for TCardDeck’s Value property. When Value
is displayed in the Object Inspector, a card name or number
can be entered, or a card can be selected from a list. Although
it’s beneficial to the component user, it’s work for the compo-
nent writer.

First, TCardValueProperty is declared by descending from
TIntegerProperty:

type TCardValueProperty = class(TIntegerProperty)
public

function GetAttributes: TPropertyAttributes; override;
function GetValue: string; override;
procedure GetValues(Proc: TGetStrProc); override;
procedure SetValue(const Value: string); override;

end;

GetAttributes: While TCardValueProperty is similar to
TIntegerProperty, it’s different because we want a drop-down list
of values. To tell the Object Inspector that TCardValueProperty
has a list of values, the code cited above overrides the
GetAttributes function with a single line of code:

function TCardValueProperty.GetAttributes:
TPropertyAttributes;

begin
Result := [paValueList,paMultiSelect];

end;

The paValueList constant tells the Object Inspector that a drop-
down list is available. The paMultiSelect constant instructs the
Object Inspector to continue displaying this property if more
than one TCardDeck component is selected. This allows you to
select multiple instances of a TCardDeck object and set their val-
ues simultaneously in the Object Inspector.

GetValue: The Object Inspector can only display properties as
strings. Since the TCardDeck Value property is an integer, the
GetValue procedure is overridden to convert the integer into a string:

function TCardValueProperty.GetValue: string;
begin

Result := CardToString(GetOrdValue);
end;

The CardToString function is part of the code in the
TCardDeck unit and returns a user-readable string such as
cdAceOfSpades.

SetValue: TCardValueProperty must limit the property’s
expected values to integers between 1 and 62, as well as iden-
tifiers from cdAceOfSpades to cdCardBack9. When the user
inputs a value into this property, the Object Inspector calls
DECEMBER 1995
the SetValue procedure:

procedure TCardValueProperty.SetValue(const Value: string);
var

NewValue: cdCardDeck;
begin

if IdentToCard(Value, NewValue) then
SetOrdValue(NewValue)

else inherited SetValue(Value);
end;

This code checks the new value. If the check fails, i.e. IdentToCard
returns False, the code calls the TIntegerProperty.SetValue procedure
to trigger an error.

GetValues: Since TCardValueProperty allows a card name to be
selected from a drop-down list, TCardValueProperty must supply
that list to the Object Inspector. This is accomplished with the
GetValues procedure:

procedure TCardValueProperty.GetValues(Proc: TGetStrProc);
var

I: Integer;
begin

for I := Low(Cards) to High(Cards) do
Proc(Cards[I].Name);

end;

This is an odd procedure. It’s passed a pointer to another proce-
dure as a parameter, and this passed procedure calls for each card
name in the drop-down list. When GetValues is finished, each
item in the drop-down list is registered with the Object Inspector.
Registering the TCardValueProperty
With TCardValueProperty declared and its code written, Delphi
must be told that the new property editor exists. This is done in
TCardDeck’s Register procedure:

procedure Register;
begin

RegisterComponents('DI',[TCardDeck]);
RegisterPropertyEditor(TypeInfo(cdCardDeck),TCardDeck,

'Value',TCardValueProperty);
end;

RegisterPropertyEditor informs Delphi of the new property editor
type. The first parameter is information about the property’s Type.
The second parameter indicates that the TCardValueProperty can
only be applied to TCardDeck components, and the third tells
Delphi the TCardValueProperty can only be applied to properties
named Value. This parameter can remain blank to use
TCardValueProperty with properties other than Value. The final
parameter is the class of property editor.
Conclusion
Several years ago I received a little hand-held US$20 poker
game as a Christmas gift. It seemed to me a reasonable experi-
ment to recreate this game on a US$3000 90MHz Pentium.
This exercise is made easy with the help of Delphi and the
TCardDeck component. Download the program and have some
fun. We’ll explore the game’s inner workings in a future article.
If you’ve never written a component before, give it a try. To see
Delphi INFORMANT ▲ 26

Useless Stuff
your custom component on the Component Palette, and set its
custom properties in the Object Inspector — it’s a real feeling of
accomplishment. ∆

The CardDeck component and sample poker game referenced in this
article are available on the 1995 Delphi Informant Works CD
located in INFORM\95\DEC\DI9512DF.
David Faulkner is a developer with Silver Software in Kula, HI. He is also Contributing
Editor to Paradox Informant, and co-author of Using Delphi: Special Edition (Que, 1995).
Mr Faulkner can be reached at (808) 878-2714, or on CompuServe at 76116,3513.
Begin Listing One — Cardsp.DPR
program Cardsp;

uses
Forms,
Cardu in 'CARDU.PAS' { Form1 };

{$R *.RES}

begin
Application.CreateForm(TForm1, Form1);
Application.Run;

end.

End Listing One
Begin Listing Two — CardDeck.PAS
{$R CARDDECK.RES}

unit CardDeck;

interface

uses SysUtils, WinProcs, Classes, Graphics,
Controls, DsgnIntf;

const
cdAceofSpades = 1;
cd2ofSpades = 2;
cd3ofSpades = 3;
cd4ofSpades = 4;
cd5ofSpades = 5;
cd6ofSpades = 6;
cd7ofSpades = 7;
cd8ofSpades = 8;
cd9ofSpades = 9;
cd10ofSpades = 10;
cdJackofSpades = 11;
cdQueenofSpades = 12;
cdKingofSpades = 13;

cdAceofHearts = 14;
cd2ofHearts = 15;
cd3ofHearts = 16;
cd4ofHearts = 17;
cd5ofHearts = 18;
cd6ofHearts = 19;
cd7ofHearts = 20;
cd8ofHearts = 21;
cd9ofHearts = 22;
cd10ofHearts = 23;
cdJackofHearts = 24;
cdQueenofHearts = 25;
cdKingofHearts = 26;
DECEMBER 1995
cdAceofClubs = 27;
cd2ofClubs = 28;
cd3ofClubs = 29;
cd4ofClubs = 30;
cd5ofClubs = 31;
cd6ofClubs = 32;
cd7ofClubs = 33;
cd8ofClubs = 34;
cd9ofClubs = 35;
cd10ofClubs = 36;
cdJackofClubs = 37;
cdQueenofClubs = 38;
cdKingofClubs = 39;

cdAceofDiamonds = 40;
cd2ofDiamonds = 41;
cd3ofDiamonds = 42;
cd4ofDiamonds = 43;
cd5ofDiamonds = 44;

cd6ofDiamonds = 45;
cd7ofDiamonds = 46;
cd8ofDiamonds = 47;
cd9ofDiamonds = 48;
cd10ofDiamonds = 49;
cdJackofDiamonds = 50;
cdQueenofDiamonds = 51;
cdKingofDiamonds = 52;

CdJoker = 53;
cdCardBack1 =54;
cdCardBack2 = 55;
cdCardBack3 = 56;
cdCardBack4 = 57;
cdCardBack5 = 58;
cdCardBack6 = 59;
cdCardBack7 = 60;
cdCardBack8 = 61;
cdCardBack9 = 62;

cdFaceCards = [1,11..14,24..27,37..40,50..52];

cdSpades = [1..13];
cdHearts = [14..26];
cdClubs = [27..39];
cdDiamonds = [40..52];

cdBlackCards = [1..13,27..39];
cdRedCards = [14..26,40..52];

cdSpade = 1;
cdHeart = 2;
cdClub = 3;
cdDiamond = 4;
cdBlack = 1;
cdRed = 2;

type
cdCardDeck = 1..62; { 52 cards + 1 joker + 9 backs }

{ Create custom property editor that accepts both
card names or card numbers more easily }

type
TCardEntry = record

Value: cdCardDeck;
Name: string[18];

end;

{ This array maps card numbers to card names }
const

Cards: array[1..62] of TCardEntry = (
(Value: cdAceofSpades; Name: 'cdAceofSpades'),
Delphi INFORMANT ▲ 27

D

Useless Stuff

(Value: cd2ofSpades; Name: 'cd2ofSpades'),
(Value: cd3ofSpades; Name: 'cd3ofSpades'),
(Value: cd4ofSpades; Name: 'cd4ofSpades'),
(Value: cd5ofSpades; Name: 'cd5ofSpades'),
(Value: cd6ofSpades; Name: 'cd6ofSpades'),
(Value: cd7ofSpades; Name: 'cd7ofSpades'),
(Value: cd8ofSpades; Name: 'cd8ofSpades'),
(Value: cd9ofSpades; Name: 'cd9ofSpades'),
(Value: cd10ofSpades; Name: 'cd10ofSpades'),
(Value: cdJackofSpades; Name: 'cdJackofSpades'),
(Value: cdQueenofSpades; Name: 'cdQueenofSpades'),
(Value: cdKingofSpades; Name: 'cdKingofSpades'),

(Value: cdAceofHearts; Name: 'cdAceofHearts'),
(Value: cd2ofHearts; Name: 'cd2ofHearts'),
(Value: cd3ofHearts; Name: 'cd3ofHearts'),
(Value: cd4ofHearts; Name: 'cd4ofHearts'),
(Value: cd5ofHearts; Name: 'cd5ofHearts'),

(Value: cd6ofHearts; Name: 'cd6ofHearts'),
(Value: cd7ofHearts; Name: 'cd7ofHearts'),
(Value: cd8ofHearts; Name: 'cd8ofHearts'),
(Value: cd9ofHearts; Name: 'cd9ofHearts'),
(Value: cd10ofHearts; Name: 'cd10ofHearts'),
(Value: cdJackofHearts; Name: 'cdJackofHearts'),
(Value: cdQueenofHearts; Name: 'cdQueenofHearts'),
(Value: cdKingofHearts; Name: 'cdKingofHearts'),

(Value: cdAceofClubs; Name: 'cdAceofClubs'),
(Value: cd2ofClubs ; Name: 'cd2ofClubs'),
(Value: cd3ofClubs ; Name: 'cd3ofClubs'),
(Value: cd4ofClubs ; Name: 'cd4ofClubs'),
(Value: cd5ofClubs ; Name: 'cd5ofClubs'),
(Value: cd6ofClubs ; Name: 'cd6ofClubs'),
(Value: cd7ofClubs ; Name: 'cd7ofClubs'),
(Value: cd8ofClubs ; Name: 'cd8ofClubs'),
(Value: cd9ofClubs ; Name: 'cd9ofClubs'),
(Value: cd10ofClubs; Name: 'cd10ofClubs'),
(Value: cdJackofClubs; Name: 'cdJackofClubs'),
(Value: cdQueenofClubs; Name: 'cdQueenofClubs'),
(Value: cdKingofClubs; Name: 'cdKingofClubs'),

(Value: cdAceofDiamonds; Name: 'cdAceofDiamonds'),
(Value: cd2ofDiamonds; Name: 'cd2ofDiamonds'),
(Value: cd3ofDiamonds; Name: 'cd3ofDiamonds'),
(Value: cd4ofDiamonds; Name: 'cd4ofDiamonds'),
(Value: cd5ofDiamonds; Name: 'cd5ofDiamonds'),
(Value: cd6ofDiamonds; Name: 'cd6ofDiamonds'),
(Value: cd7ofDiamonds; Name: 'cd7ofDiamonds'),
(Value: cd8ofDiamonds; Name: 'cd8ofDiamonds'),
(Value: cd9ofDiamonds; Name: 'cd9ofDiamonds'),
(Value: cd10ofDiamonds; Name: 'cd10ofDiamonds'),
(Value: cdJackofDiamonds; Name: 'cdJackofDiamonds'),
(Value: cdQueenofDiamonds; Name: 'cdQueenofDiamonds'),
(Value: cdKingofDiamonds; Name: 'cdKingofDiamonds'),

(Value: CdJoker; Name: 'CdJoker'),
(Value: cdCardBack1; Name: 'cdCardBack1'),
(Value: cdCardBack2; Name: 'cdCardBack2'),
(Value: cdCardBack3; Name: 'cdCardBack3'),
(Value: cdCardBack4; Name: 'cdCardBack4'),
(Value: cdCardBack5; Name: 'cdCardBack5'),
(Value: cdCardBack6; Name: 'cdCardBack6'),
(Value: cdCardBack7; Name: 'cdCardBack7'),
(Value: cdCardBack8; Name: 'cdCardBack8'),
(Value: cdCardBack9; Name: 'cdCardBack9'));

type
{ Create a custom property editor for cdCardDeck --

allows user to type in name of card, type in number
of card, or select card from list }

TCardValueProperty = class(TIntegerProperty)
ECEMBER 1995
public
function GetAttributes: TPropertyAttributes; override;
function GetValue: string; override;
procedure GetValues(Proc: TGetStrProc); override;
procedure SetValue(const Value: string); override;

end;

{ Now create TCardDeck }
type

TCardDeck = class(TGraphicControl)

private
FValue: cdCardDeck; { value of card being diplayed }
FStretch: Boolean; { stretch bitmap to fit client? }
procedure SetValue(Value: cdCardDeck);
procedure SetStretch(Value: Boolean);

protected
procedure Paint; override;

public
constructor Create(AOwner: TComponent); override;

published
property Value: cdCardDeck read FValue

write SetValue default cdAceofSpades;
property Stretch: Boolean read FStretch

write SetStretch default False;
{ surface drag and drop events so programmers can

make cards that drag }
property DragCursor;
property DragMode;
property OnDragDrop;
property OnDragOver;
property OnEndDrag;
property OnMouseDown;
property OnMouseMove;
property OnMouseUp;
property OnClick;
property OnDblClick;

end;

function CardToIdent(Card: cdCardDeck;
var Ident: string): Boolean;

function IdentToCard(const Ident: string;
var Card: cdCardDeck): Boolean;

function CardToString(Card: cdCardDeck): string;
procedure Register;

{ Utility routines for the programmer }
function IsCardRed(Value:cdCardDeck): Boolean;
function IsCardBlack(Value:cdCardDeck): Boolean;
function IsFaceCard(Value:cdCardDeck): Boolean;

function AreCardsSameColor(Value1,
Value2: cdCardDeck) : Boolean;

function AreCardsSameSuit(Value1,
Value2: cdCardDeck) : Boolean;

function AreCardsSameValue(Value1,
Value2: cdCardDeck) : Boolean;

function CardColor(Value: cdCardDeck): integer;
function CardSuit(Value: cdCardDeck): integer;
function CardValue(Value: cdCardDeck): integer;

implementation

{ Put cdCardDeck on palette, register custom property editor }
procedure Register;
begin

RegisterComponents('DI', [TCardDeck]);
Delphi INFORMANT ▲ 28

Useless Stuff
RegisterPropertyEditor(TypeInfo(cdCardDeck),TCardDeck,
'Value',TCardValueProperty);

end;

{ paint the card face bitmap on the screen }
procedure TCardDeck.Paint;
var

BitMap:TBitMap;
BackGroundColor:TColor;
FacePChar: array [0..25] of char;

begin
{ convert value to Pchar so can call Windows API }

strpcopy(FacePChar,CardToString(Value));
BitMap := TBitMap.create;
try

BitMap.handle := LoadBitMap(HInstance,FacePChar);
if not BitMap.empty then begin

if Stretch then
canvas.stretchdraw(clientrect,BitMap)

else begin
{ draw clear rectangle to see color of background }
canvas.brush.style:=bsclear;
canvas.pen.style:=psclear;
canvas.rectangle(0,0,0,0);
BackGroundColor:=canvas.pixels[0,0];
{ now draw the bitmap }
Canvas.draw(0,0,BitMap);
{ set corners of bitmap to background color }
canvas.pixels[0,0]:=BackGroundColor;
canvas.pixels[1,0]:=BackGroundColor;
canvas.pixels[0,1]:=BackGroundColor;

canvas.pixels[bitmap.width-1,0] := BackGroundColor;
canvas.pixels[bitmap.width-2,0] := BackGroundColor;
canvas.pixels[bitmap.width-1,1] := BackGroundColor;

canvas.pixels[bitmap.width-1,
bitmap.height-1] := BackGroundColor;

canvas.pixels[bitmap.width-2,
bitmap.height-1] := BackGroundColor;

canvas.pixels[bitmap.width-1,
bitmap.height-2] := BackGroundColor;

canvas.pixels[0,bitmap.height-1]:= BackGroundColor;
canvas.pixels[1,bitmap.height-1]:= BackGroundColor;
canvas.pixels[0,bitmap.height-2]:= BackGroundColor;

end;
end;

finally
BitMap.free;

end;
end;

constructor TCardDeck.Create(AOwner: TComponent);
begin

inherited Create(AOwner);
Height := 96;
Width := 71;
Value := cdAceofSpades;

end;

procedure TCardDeck.SetValue(Value: cdCardDeck);
begin

if Value<>FValue then
begin

FValue := Value;
repaint;

end;
end;
DECEMBER 1995
procedure TCardDeck.SetStretch(Value: Boolean);
begin

if Value<>FStretch then
begin

if not Value then begin
Height := 96;
Width := 71;

end;
FStretch := Value;
Invalidate;

end;
end;

{ ** TCardValueProperty custom property editor routines ** }
function TCardValueProperty.GetAttributes:

TPropertyAttributes;
begin

Result := [paValueList, paMultiSelect];
end;

function TCardValueProperty.GetValue: string;

begin
Result := CardToString(GetOrdValue);

end;

procedure TCardValueProperty.GetValues(Proc: TGetStrProc);
var

I: Integer;
begin

for I := Low(Cards) to High(Cards) do Proc(Cards[I].Name);
end;

procedure TCardValueProperty.SetValue(const Value: string);
var

NewValue: cdCardDeck;
begin

if IdentToCard(Value, NewValue) then
SetOrdValue(NewValue)

else inherited SetValue(Value);
end;
{ end of TCardValueProperty custom property editor routines }

function CardToString(Card: cdCardDeck): string;
begin

if not CardToIdent(Card, Result) then
FmtStr(Result, '$%.8x', [Card]);

end;

function CardToIdent(Card: cdCardDeck;
var Ident: string): Boolean;

var
I: Integer;

begin
Result := False;
for I := Low(Cards) to High(Cards) do

if Cards[I].Value = Card then
begin

Result := True;
Ident := Cards[I].Name;
Exit;

end;
end;

function IdentToCard(const Ident: string;
var Card: cdCardDeck): Boolean;

var
I: Integer;

begin
Result := False;
for I := Low(Cards) to High(Cards) do
Delphi INFORMANT ▲ 29

Useless Stuff
if CompareText(Cards[I].Name, Ident) = 0 then
begin

Result := True;
Card := Cards[I].Value;
Exit;

end;
end;

{ ** utility routines for the programmer ** }
function IsCardRed(value: cdCardDeck): Boolean;
begin

Result := value in cdRedCards;
end;

function IsCardBlack(value: cdCardDeck): Boolean;
begin

Result := value in cdBlackCards;
end;

function AreCardsSameColor(Value1,
Value2: cdCardDeck): Boolean;

begin
Result := CardColor(Value1) = CardColor(Value2);

end;

function AreCardsSameSuit(Value1,
Value2: cdCardDeck) : Boolean;

begin
Result := CardSuit(Value1) = CardSuit(Value2);

end;

function AreCardsSameValue(Value1,
Value2: cdCardDeck) : Boolean;

begin
Result := CardValue(Value1) = CardValue(Value2);

end;

function IsFaceCard(Value: cdCardDeck):Boolean;
begin

Result := value in cdFaceCards;
end;

function CardColor(Value: cdCardDeck):integer;
begin

result:=0;
if value in cdRedCards then Result := cdRed;
if value in cdBlackCards then Result := cdBlack;

end;

function CardSuit(Value: cdCardDeck):integer;
begin

result:=0;
if value in cdSpades then Result := cdSpade;
if value in cdHearts then Result := cdHeart;
if value in cdClubs then Result := cdClub;
if value in cdDiamonds then Result := cdDiamond;

end;

function CardValue(Value: cdCardDeck): integer;
var

Suit: integer;
begin

result := 0;
Suit := CardSuit(Value);
if Suit<>0 then result := Value-(Suit-1)*13

end;

end.

End Listing Two
DECEMBER 1995
Begin Listing Three — Cardu.PAS
unit Cardu;

interface

uses WinTypes, WinProcs, Classes, Graphics, Forms,
Controls, StdCtrls, SysUtils, Dialogs, mmSystem, ExtCtrls,
Carddeck, Buttons;

type
TForm1 = class(TForm)

DealOrDraw: TButton;
Hold1: TLabel;
Hold2: TLabel;
Hold3: TLabel;
Hold4: TLabel;
Hold5: TLabel;
HoldButton1: TButton;
HoldButton2: TButton;
HoldButton3: TButton;
HoldButton4: TButton;
HoldButton5: TButton;
Timer1: TTimer;
HoldOrDraw: TLabel;
Shape1: TShape;
Pot: TLabel;
CardDeck1: TCardDeck;
CardDeck2: TCardDeck;
CardDeck3: TCardDeck;
CardDeck4: TCardDeck;
CardDeck5: TCardDeck;
Label1: TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Label5: TLabel;
Label6: TLabel;
Label7: TLabel;
Label8: TLabel;
Label9: TLabel;
Label10: TLabel;
Label11: TLabel;
Label12: TLabel;
Label13: TLabel;
Label14: TLabel;
Label15: TLabel;
Label16: TLabel;
SoundButton: TBitBtn;

procedure DealOrDrawClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure HoldButton1Click(Sender: TObject);
procedure SoundButtonClick(Sender: TObject);
procedure Timer1Timer(Sender: TObject);

end;

type
TCardHand = array[1..5] of byte;

var
Form1: TForm1;
aUsedCards: array[1..52] of Boolean;{ card dealt yet? }
aUsedTag: array[1..5] of Boolean; { card scored yet? }
bFirstDeal: Boolean; { opening deal? }
aHand: TCardHand; { cards in hand }
iWinnings: Longint; { loot from last win }
bBlinker: Boolean; { blink winning cards }
bNextSong: Boolean; { song to play on win }
bSound: Boolean; { is sound turned on? }
bJustWon: Boolean; { did user just win? }
Delphi INFORMANT ▲ 30

Useless Stuff
implementation

{$R *.DFM}

procedure TForm1.DealOrDrawClick(Sender: TObject);
var

x,y,z: byte; { general purpose }
iCurrentCount: byte; { # of matching cards in hand }
iCardCount: byte; { used to step through 52 cards }
bTwoOfAKind, { two of a kind }
bTwoPair, { two pair }
bThreeOfAKind, { three of a kind }
bFourOfAKind, { four of a kind }
bJacksOrBetter, { a pair of jacks or better }
bFlush, { a flush }
bStraight, { a straight }
bStraightFlush, { a straight flush }
bFullHouse, { a full house }
bRoyalFlush: Boolean; { is this a really lucky player }
aFaceCopy: TCardHand; { a copy of the current hand }

begin
if bSound then

sndPlaySound('Deal.wav',3);

Timer1.enabled := False;
if iWinnings<>0 then begin

Pot.caption:=IntToStr(StrToInt(Pot.caption)+iWinnings);
iWinnings:=0;

end;

if bFirstDeal and (StrToInt(Pot.caption)=0) then begin
MessageDlg('Busted, You have no money left to bet!',

mtWarning,[mbOK], 0);
exit;

end;

if bFirstDeal then begin
for x:=1 to 52 do { initialize deck }

aUsedCards[x] := False;
DealOrDraw.Caption := '&Draw';
HoldOrDraw.Caption := 'Hold or Draw';
Pot.caption := IntToStr(StrToInt(Pot.caption)-5);
{ Pick out 5 new cards }
for iCardCount:=1 to 5 do begin

TButton(FindComponent('HoldButton' +
inttostr(iCardCount))).enabled:=True;

TLabel(FindComponent('Hold' +
inttostr(iCardCount))).visible:=False;

repeat { Pick a random card }
x := random(51)+1;

until not aUsedCards[x];
TCardDeck(FindComponent('CardDeck' +

inttostr(iCardCount))).value := x;
if bSound then sndPlaySound('CARD.WAV',2);
aUsedCards[x] := True;
aHand[iCardCount] := x;
end;

end
else

begin
HoldOrDraw.caption := '';
for iCardCount := 1 to 5 do

begin { deal new cards for non held cards }
TButton(FindComponent('HoldButton'+

inttostr(iCardCount))).enabled := False;
if Tlabel(FindComponent('Hold'+

inttostr(iCardCount))).visible then
continue;

repeat
x := random(51)+1;

until not aUsedCards[x];
DECEMBER 1995
TCardDeck(FindComponent('CardDeck'+
inttostr(iCardCount))).value:=x;

if bSound then sndPlaySound('CARD.WAV',2);
aUsedCards[x]:=True;
aHand[iCardCount]:=x;
Tlabel(FindComponent('Hold'

inttostr(iCardCount))).visible := False;
end;

DealOrDraw.Caption:='&Deal';

{ Now score the whole thing }
bTwoOfAKind := False;
bTwoPair := False;
bThreeOfAKind := False;
bFourOfAKind := False;
bJacksOrBetter := False;
bFlush := True;
bStraight := True;
bFullHouse := False;
for x:=1 to 5 do

aUsedTag[x] := False;

{ compare face value of each card to other
cards counting matches }

for x:=1 to 5 do begin
if aUsedtag[x] then continue;
iCurrentCount:=0;
for y:=x+1 to 5 do begin

if (CardValue(aHand[x])=CardValue(aHand[y])) and
(not aUsedTag[y]) then begin

aUsedTag[y] := True;
aUsedTag[x] := True;
inc(iCurrentCount);
if isFaceCard(aHand[x]) then

bJacksOrBetter := True;
end;

end; { end of inner for loop }

case iCurrentCount of
3: bFourOfAKind := True;
2: bThreeOfAKind := True;
1: if bTwoOfAKind then

bTwoPair := True
else

bTwoOfAKind := True;
end; { End of CurrentCount case }

end; { End of outer loop }

{ it's a flush if CardSuit of all five cards is the same }
for x:=2 to 5 do

bFlush := (CardSuit(aHand[1])=
CardSuit(aHand[x])) and bFlush;

{ now detect a straight, start by creating a sorted
copy of hand using copy so can 'blink' winning cards }

for x:=1 to 5 do
afacecopy[x] := CardValue(ahand[x]);

{ just a little bubble sort }
for x:= 1 to 4 do begin

for y:=x to 5 do begin
if afacecopy[y] > afacecopy[x] then begin

z := afacecopy[x];
afacecopy[x] := afacecopy[y];
afacecopy[y] := z;

end;
end;

end;

{ if it’s a straight then each consecutive card will
have face value of one more than previous card }

for x:=2 to 5 do
Delphi INFORMANT ▲ 31

Useless Stuff
if afacecopy[x]<>afacecopy[x-1]-1 then
bStraight:=False;

bFullHouse := bThreeOfAKind and bTwoOfAKind;
bStraightFlush := bStraight and bFlush;
bRoyalFlush :=

bFlush and bStraight and (CardValue(ahand[1])=14);

if bRoyalFlush then iWinnings:=3000 else
if bStraightFlush then iWinnings:=250 else
if bFourOfAKind then iWinnings:=125 else
if bFullHouse then iWinnings:=40 else
if bFlush then iWinnings:=25 else
if bStraight then iWinnings:=20 else
if bThreeOfAKind then iWinnings:=15 else
if bTwoPair then iWinnings:=10 else
if bTwoOfAKind and bJacksOrBetter then

iWinnings:=5 else iWinnings:=0;

{ if winnings are >20 then all five cards are
involved, otherwise aUsedTag is already set }

if iWinnings >= 20 then
for x:=1 to 5 do

aUsedTag[x] := True;

{ if user won then set up timer to give the user
the loot and play sounds }

if Boolean(iWinnings) then begin
if bSound then

sndPlaySound('Win.wav',2);
bJustWon := True;
Timer1.Interval := 200;
Timer1Timer(Tobject(TForm1));
Timer1.enabled := True;

end;
end; { End of if second hand }

bFirstDeal := not bFirstDeal;
end;

procedure TForm1.FormCreate(Sender: TObject);

begin
bSound := True;
bNextSong := False;
bBlinker := False;
Pot.caption := '100';
Randomize;
bFirstDeal := True;

end;

procedure TForm1.HoldButton1Click(Sender: TObject);
var

s: string[1];
i: byte;

begin
if bFirstDeal then exit;
{ get the last character of component that called this

routine, the last character is either 1,2,3,4, or 5 }
s := (sender as Tcomponent).name[length(

(sender as Tcomponent).name)];

{ Each card has a label with the word 'Hold' as its
caption above the card, toggle the visibility of that
label when user clicks Hold button or card }

TLabel(FindComponent('Hold'+s)).visible :=
not TLabel(FindComponent('Hold'+s)).visible;
DECEMBER 1995
if bSound then begin

if TLabel(FindComponent('Hold'+s)).visible then
sndPlaySound('HOLD.WAV',3)

else
sndPlaySound('UNHOLD.WAV',3);

end;

ActiveControl:=DealOrDraw;

end;

procedure TForm1.SoundButtonClick(Sender: TObject);
begin

bSound := Not bSound;
ActiveControl := DealOrDraw;

end;

procedure TForm1.Timer1Timer(Sender: TObject);
var

x: byte;
begin

if bBlinker then begin
for x:=1 to 5 do

if aUsedTag[x] then
TCardDeck(FindComponent('CardDeck'+

inttostr(x))).value:=cdCardBack5;
end

else begin
for x:=1 to 5 do

if aUsedTag[x] then
TCardDeck(FindComponent('CardDeck'+

inttostr(x))).value:=aHand[x];
end;
bBlinker := not bBlinker;

if iWinnings>0 then begin
if bSound then

sndPlaySound('Coin.wav',3);
Pot.caption := IntToStr(StrToInt(Pot.caption)+1);
iWinnings := iWinnings-1;

end
else

if bJustWon then begin
Timer1.Interval := 300;
bJustWon := False;
if bSound then begin

bNextSong:= not bNextSong;
if bNextSong then

sndPlaySound('Money.wav',3)
else

sndPlaySound('Happy.wav',3);
end;

end;
end;

end.

End Listing Three
Delphi INFORMANT ▲ 32

DECEMBER 1995

Sights & Sounds
Delphi / Object Pascal

By Sedge Simons, Ph.D.

Hotspots
Creating Mouse-Sensitive Areas on Your Forms

Figure 1: Region functions as defined
on-line help.
C reating a full-featured graphical user interface for applications
involving maps, drawings, or charts introduces a challenge for the
Delphi developer. Such applications usually require hotspots, i.e.

on-screen areas or objects that are sensitive to mouse events. This article
introduces regions, a Windows API data structure that enables you to cre-
ate hotspots of any size or shape.
Interacting with an Image
Most of us have used drawing, charting, or mapping software that allows interaction with
an image. For instance, a drawing tool may be used to create a circle that can then be select-
ed and its properties modified. In a geographical information system (GIS), we can click on
a map’s feature to view information about it stored in a database.

These examples illustrate hotspots — areas of an image that are sensitive to mouse events.
These hotspots usually coincide with what Delphi developers consider objects: shapes on a
drawing or features on a map.

The simplest way to create hotspots in a Delphi application is to place components on
the image. [For tips on hotspots, see David Rippy’s “At Your Fingertips” in the August
 in Delphi’s Windows API
1995 Delphi Informant.] These components may be visible
objects or transparent ones that overlap part of another
image. This technique has two significant drawbacks:
• Although components can appear to be any shape, they

always cover a rectangular area, and are sensitive to mouse
events anywhere in that rectangle.

• Components that are part of the visible image can
require special programming when printing.
Regions
Regions are a flexible means of creating hotspots. They are
independent of any on-screen visual image and are stored as
data structures. The relationship between regions and an image
is decided by the programmer. The Windows API includes a
full suite of functions for creating and manipulating regions of
practically any size or shape. Under Windows 3.1, the only
restriction is that each region is limited to a size of 32,767 by
32,767 units, or 64KB of memory, whichever is smaller.
Delphi INFORMANT ▲ 33

procedure TForm1.ButtonEllipseClick(Sender: TObject);
var

x1,x2,y1,y2: Integer;
begin

FreeRegions;
ImageHandle := Image1.Canvas.Handle;
Nregions := 5;

Sights & Sounds
A region can be viewed as a set of points. Normally, these points
will coincide with pixels in an image. A function in the
Windows API tests a point to determine if it’s within a specified
region. This function can also map mouse events from an on-
screen image to a set of previously defined regions. Figure 1
shows a list of Windows API region functions.
for i := 1 to Nregions do
begin

x1 := i*40;
x2 := x1 + 35;
y1 := i*30;
y2 := x1 + 25;
New(RegionRecord);
RegionRecord^.rgn := CreateEllipticRgn(x1,y1,x2,y2);
RegionRecord^.id := ' Hello from elliptic region ' +

IntToStr(i);
RegionList.Add(RegionRecord);

end;
ShowOrHide(Sender);
Label1.Caption := 'Elliptic regions created.'

end;
Using Regions
The typical steps for using regions are to:
• allocate memory
• create and store regions
• respond to events
• free memory

To illustrate these steps, the example application defines
regions that correspond to various shapes shown in a
TImage object. It then responds to MouseDown events in
the image (see Figure 2).
Figure 2:
Our sample
application.
The shapes
shown in the
TImage object
correspond to
regions defined
by the code in
Listing Five.

Figure 3: The custom ButtonEllipseClick procedure.
Allocate memory. When a region is created, the Windows
API allocates memory for the data structure, then returns a
handle. It’s your responsibility to track these handles in the
Delphi application, and to free corresponding objects when
they become unnecessary.

Create and store regions. Typically, information about the
region is stored with the region handle. For example, if each
region represents a record in a table, storing that record’s key
with the region handle allows information to be displayed
from the table in response to a mouse click. One way to do
this is to define a record object that contains the region han-
dle and any other useful fields.

In this example, the record is defined as:

arec = record
rgn: HRgn;
id: string;

end;

In this record rgn is the region handle, and id is a simple
string we create and store as a short description of the region.

The records of each region can be stored in an array or in a
TList. An array may be more convenient, but it requires
DECEMBER 1995
space in the 64KB of memory used for the data and stack
segments (a Windows 3.1 limitation). In this example, the
records are stored in a TList.

The Object Pascal code shown in Figure 3 creates five
regions when the user clicks the button labeled Elliptic
Regions. A record is stored for each region. Similar code,
shown in Listing Five on page 35, creates regions of differ-
ent shapes in response to clicks on the other buttons.

It’s important to remember that the regions are completely
independent of what is shown on screen. In this example, the
ShowOrHide procedure is called after the regions are created.
If the Show radio button is checked, ShowOrHide will draw
shapes on the TImage representing the regions. Otherwise the
image remains blank. Regardless of what the image displays,
the regions exist and are ready to use.

Respond to events. From a practical standpoint, something on
screen will almost always coincide with a region you create. This
is done by executing independent drawing commands when cre-
ating a region, or creating it first and then drawing a frame
around it in a specified device context. The latter method repre-
sents the most versatile code and is implemented in the
ShowOrHide procedure (see Figure 4).

Interacting with regions means responding to events. In
Figure 4, we want to retrieve data from the region record in
response to mouse clicks in the TImage control. Therefore,
the code is attached to the TImage MouseDown event that will
attempt to map the coordinates of the mouse event to one of
the regions we have defined.

The Windows API function, PtInRegion, maps events to
regions. It returns True if the specified point is inside the
specified region. In response to a MouseDown event on
Image1, we simply iterate through the list of regions, testing
each to see if the event occurred inside it (see Figure 5).
Delphi INFORMANT ▲ 34

Sights & Sounds

procedure TForm1.ShowOrHide(Sender: TObject);
begin

Bitmap := Tbitmap.Create;
Bitmap.Width := Image1.Width;
BitMap.Height := Image1.Height;
Image1.Picture.Graphic := Bitmap;
if RadioButtonShow.Checked then

begin
ImageHandle := Image1.Canvas.Handle;

for i := 0 to RegionList.Count - 1 do
begin

RegionRecord := RegionList.Items[i];
FrameRgn(ImageHandle,RegionRecord^.Rgn,

RedBrush,1,1);
end;

Image1.Invalidate;
Label1.Caption := '';

end;
Bitmap.Free;

end;

procedure TForm1.FormClose(Sender: TObject;
var Action: TCloseAction);

begin
FreeRegions;
DeleteObject(RedBrush);
RegionList.Free;

end;

procedure TForm1.FreeRegions;
var

i: Integer;
begin

for i := 0 to RegionList.Count - 1 do
begin

RegionRecord := RegionList.Items[i];
DeleteObject(RegionRecord^.Rgn);

end;
RegionList.Clear;

end;

procedure TForm1.Image1MouseDown (Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);

var
i: Integer;

begin
Label1.Caption := '';
for i := 0 to RegionList.Count - 1 do

begin
RegionRecord := RegionList.Items[i];

if PtInRegion(RegionRecord^.Rgn, x, y) then
Label1.Caption := RegionRecord^.id;

end;
end;

Figure 6: The FormClose and custom FreeRegions procedures are
responsible for releasing resources.

Figure 4 (Top): The custom ShowOrHide procedure. Figure 5
(Bottom): The custom Image1MouseDown procedure.

Dr. Simons is a senior systems analyst at Jensen Data Systems, Inc., a Texas-based
provider of database training, consulting, and application development. He writes
applications and does consulting in Delphi and Paradox. You can reach him through
CompuServe at 70771,75 or by calling Jensen Data Systems, Inc. at (713) 359-3311.
Free memory. As mentioned earlier, it’s the programmer’s
responsibility to free the memory occupied by region objects.
In this example, we must also free the TList object that stores
the records for each region. Each region is freed with a call to
DeleteObject. Then we can clear the TList. On the FormClose
event (see Figure 6), the TList is freed in the usual Delphi
manner. And don’t free the TList first! You need those handles
to free the regions.
Using the Application
To create regions when you first run the application, select
the Show radio button and click one of the three region but-
tons. Outlines corresponding to the regions are then drawn
on the image. Remember, the regions are not part of the
image. As you click on different parts of the image, the pro-
gram searches the regions to determine if the MouseDown
event occurred inside a region. If so, it will display the string
that was saved with the region record.

Select the Hide radio button and continue clicking on the
image. The regions remain in place, and the mouse response
is the same. However, nothing has been drawn on the image.
Conclusion
Regions let you create just about any type of hotspot you can
imagine. Although hotspots are probably the most common
application, regions and the powerful set of Windows API
DECEMBER 1995
region functions are problem solvers in other situations, too.
Just try writing a function like PtInRegion yourself! ∆

The demonstration project referenced in this article is available
on the 1995 Delphi Informant Works CD located in
INFORM\95\DEC\DI9512SS.
Begin Listing Four — Region.DPR
program Region;

uses
Forms,
Region1 in 'REGION1.PAS' {Form1};

{$R *.RES}

begin
Application.CreateForm(TForm1, Form1);
Application.Run;

end.
End Listing Four
Begin Listing Five — Region1.PAS
unit Region1;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics,
Controls, Forms, Dialogs, ExtCtrls, StdCtrls;

type
Prec = ^arec;
arec = record

rgn: HRgn;
id: string;

end;
Delphi INFORMANT ▲ 35

Sights & Sounds
TForm1 = class(TForm)
ScrollBox1: TScrollBox;
Image1: TImage;
ButtonEllipse: TButton;
Bevel1: TBevel;
Label1: TLabel;
ButtonPolygon: TButton;
ButtonRectangle: TButton;
Label2: TLabel;
Bevel2: TBevel;
RadioButtonShow: TRadioButton;
RadioButtonHide: TRadioButton;
procedure Image1MouseDown(Sender: TObject; Button:

TMouseButton; Shift: TShiftState; X, Y: Integer);
procedure FormCreate(Sender: TObject);
procedure FormClose(Sender: TObject;

var Action: TCloseAction);
procedure FreeRegions;
procedure ButtonPolygonClick(Sender: TObject);
procedure ButtonEllipseClick(Sender: TObject);
procedure ButtonRectangleClick(Sender: TObject);
procedure ShowOrHide(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form1: TForm1;
RedBrush: HBrush;
ImageHandle: HDC;
Bitmap: Tbitmap;

Nregions: Integer;
RegionList: Tlist;
RegionRecord: Prec;
i: Integer;

implementation

{$R *.DFM}

procedure TForm1.FormCreate(Sender: TObject);
begin

RedBrush := CreateSolidBrush(clRed);
Nregions := 0;
RegionList := Tlist.Create;

end;

procedure TForm1.FormClose(Sender: TObject;
var Action: TCloseAction);

begin
FreeRegions;
DeleteObject(RedBrush);
RegionList.Free;

end;

procedure TForm1.FreeRegions;
var

i: Integer;
begin

for i := 0 to RegionList.Count - 1 do
begin

RegionRecord := RegionList.Items[i];
DeleteObject(RegionRecord^.Rgn);

end;

RegionList.Clear;
end;
DECEMBER 1995
{ The next three procedures create regions in resonse to
the buttons on the form. }

procedure TForm1.ButtonEllipseClick(Sender: TObject);
var

x1,x2,y1,y2: Integer;
begin

FreeRegions;
ImageHandle := Image1.Canvas.Handle;
Nregions := 5;
for i := 1 to Nregions do
begin

x1 := i*40;
x2 := x1 + 35;
y1 := i*30;
y2 := x1 + 25;
New(RegionRecord);
RegionRecord^.rgn := CreateEllipticRgn(x1,y1, x2,y2);
RegionRecord^.id := ' Hello from elliptic region ' +

IntToStr(i);
RegionList.Add(RegionRecord);

end;
ShowOrHide(Sender);
Label1.Caption := 'Elliptic regions created.'

end;

procedure TForm1.ButtonPolygonClick(Sender: TObject);
var

PointArray: array[1..10] of TPoint;
npoints: integer;

begin
FreeRegions;
ImageHandle := Image1.Canvas.Handle;
Nregions := 3;
PointArray[1] := Point(5, 5);
PointArray[2] := Point(100, 5);
PointArray[3] := Point(110, 70);
New(RegionRecord);
RegionRecord^.rgn := CreatePolygonRgn(PointArray, 3,

WINDING);
RegionRecord^.id := ' Hello from polygon region 1';
RegionList.Add(RegionRecord);
PointArray[1] := Point(15, 80);
PointArray[2] := Point(120, 100);
PointArray[3] := Point(20, 120);
PointArray[4] := Point(15, 160);
New(RegionRecord);
RegionRecord^.rgn := CreatePolygonRgn(PointArray, 4,

WINDING);
RegionRecord^.id := ' Hello from polygon region 2';
RegionList.Add(RegionRecord);
PointArray[1] := Point(200, 5);
PointArray[2] := Point(300, 10);
PointArray[3] := Point(280, 100);
PointArray[4] := Point(250, 160);
PointArray[5] := Point(200, 90);
New(RegionRecord);
RegionRecord^.rgn := CreatePolygonRgn(PointArray, 5,

WINDING);
RegionRecord^.id := ' Hello from polygon region 3';
RegionList.Add(RegionRecord);
ShowOrHide(Sender);
Label1.Caption := 'Polygon regions created.'

end;

procedure TForm1.ButtonRectangleClick(Sender: TObject);
var

x1,x2,y1,y2,y0,i0: Integer;

begin
FreeRegions;
Delphi INFORMANT ▲ 36

Sights & Sounds
ImageHandle := Image1.Canvas.Handle;
for i0 := 0 to 5 do
begin

y0 := i0*40;
for i := 1 to 50 do
begin

x1 := i*7;
x2 := x1 + 6;
y1 := 1 + y0;
y2 := y1 + 30;
New(RegionRecord);
RegionRecord^.rgn := CreateRectRgn(x1,y1, x2,y2);
RegionRecord^.id := ' Hello from rectangle region ' +

IntToStr(i0*100+i);
RegionList.Add(RegionRecord);

end;
end;
ShowOrHide(Sender);
Label1.Caption := 'Rectangle regions created.'

end;

{ The next procedure will iterate through the regions
checking if a MouseDown event occured inside a region.
If so, the caption of Label1 is changed to show the id
of the region. }

procedure TForm1.Image1MouseDown(Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X,Y: Integer);

var
i: Integer;

begin
Label1.Caption := '';
for i := 0 to RegionList.Count - 1 do
begin

RegionRecord := RegionList.Items[i];
if ptInRegion(RegionRecord^.Rgn, x, y) then

Label1.Caption := RegionRecord^.id;
end;

end;

{ When the Show button is selected, this procedure prepares
a bitmap and draws outlines on it that correspond to the
regions that have been created. }

procedure TForm1.ShowOrHide(Sender: TObject);
begin

Bitmap := Tbitmap.Create;
Bitmap.Width := Image1.Width;
BitMap.Height := Image1.Height;
Image1.Picture.Graphic := Bitmap;
if RadioButtonShow.Checked then

begin
ImageHandle := Image1.Canvas.Handle;

for i := 0 to RegionList.Count - 1 do
begin

RegionRecord := RegionList.Items[i];
FrameRgn(ImageHandle, RegionRecord^.Rgn,

RedBrush, 1, 1);
end;

Image1.Invalidate;
Label1.Caption := '';

end;
Bitmap.Free;

end;

end.

End Listing Five
DECEMBER 1995 Delphi INFORMANT ▲ 37

DECEMBER 1995

DBNavigator
Delphi / Object Pascal

By Cary Jensen, Ph.D.

Finding Your Keys
Locating Records in Paradox Tables

Figure 1: The DEMO1 project demon
strates using the GotoKey and GotoNe
methods on the NEWCUST.DB table.
M ost database applications provide a technique to select a particular
record. For example, in a customer database, it’s necessary to locate
a specific record based on a customer's name, account number, street

address, or some other unique piece of information.

There are several techniques you can use to find a particular record in a table using a Table
component. However, most of these only permit you to locate a record based on the fields of a
table’s index. This month's DBNavigator looks at the basics of locating records, including the
use of the TTable methods SetKey, FindKey, and FindNearest, and sequential record searches.
SetKey and GotoKey
The first technique involves the dsSetKey state. A Table component's state identifies what
is happening to it. For instance, if a table is in the dsInsert state, a record has been insert-
ed, but has not been posted. Likewise, if a table is in the dsEdit state, the current record
is being modified.

The table state, dsSetKey, is a special state that permits you to identify the index field values of
the record you want to move to. You can enter this state in one of two ways, using the SetKey
or EditKey method.

The Table method SetKey is used most commonly. When you call this method, the table is
placed into a state where assignments to its individual fields are not applied to it, but are
stored in the search key buffer. This buffer contains values only for index fields.
-
arest
Once values are assigned to one or more indexed fields within the dsSetKey state, you
can call one of four methods. The method GotoKey is used to move to the record whose
indexed field values match those in the search key buffer. GotoNearest is used to move
to the record that most closely matches the buffer values. The last two methods,
FindKey and FindNearest, do not require the dsSetKey state and will be discussed later in
this article.

The use of SetKey, GotoKey, and GotoNearest is demonstrated in the project named
DEMO1 shown in Figure 1. This project uses the NEWCUST.DB table and is pointed
to by the alias DBDEMOS. (DBDEMOS is created by default by the Delphi installa-
tion program. NEWCUST.DB is based on the CUSTOMER.DB table that ships with
Delphi.) NEWCUST.DB has been modified to include two additional indexes:
Delphi INFORMANT ▲ 38

DBNavigator

Figure 2: The DEMO2
project demonstrates
the use of FindKey and
FindNearest on the
NEWCUST.DB table.
Company, a secondary, case-sensitive index similar to the
ByCompany index defined by CUSTOMER.DB, and
ByCityState, a two-field, case-insensitive index.

DEMO1 contains an Edit component that allows the user to
enter a search value. The code attached to the button labeled
GotoKey places the Table component associated with NEW-
CUST.DB, Table1, into the dsSetKey state. In this form,
Table1 is using the primary index of NEWCUST.DB, which
is based on the CustNo field. If a value entered into the Edit
component exactly matches one of the values in the CustNo
field, clicking GotoKey moves you to that record. Here’s the
OnClick event handler for Button1:

procedure TForm1.Button1Click(Sender: TObject);
begin

Table1.SetKey;
Table1.FieldByName('CustNo').AsString := Edit1.Text;
if Table1.GotoKey then

DBGrid1.SetFocus;
end;

The first statement

Table1.SetKey;

places the table pointed to by Table1 into the dsSetKey state.
Next, the value from the Text property of the Edit compo-
nent, Edit1, is assigned to the CustNo field. This assignment
looks as though data is being written to the table. However,
because of the dsSetKey state, it’s written to the search key
buffer. Next, the GotoKey method of Table1 is called. This is a
function that returns a Boolean value of True if an exact
match is found, and False otherwise.

If the GotoKey method returns True, a call to the SetFocus
method for the DBEdit component is executed. When you
click on the button, it receives focus. In addition, if the
GotoKey method returns True (meaning a match is located),
the statement

DBGrid1.SetFocus;

moves the focus onto the DBGrid and places the cursor on
the located record.

Button2 on DEMO1, labeled GotoNearest, is associated with
an event handler similar to that assigned to Button1. The pri-
mary difference is that the GotoNearest method (a procedure) is
used rather than GotoKey (a function). GotoNearest doesn’t
return a value because it’s always successful in moving to the
record that most closely matches the values stored in the search
key buffer. Here’s the OnClick event handler for Button2:

procedure TForm1.Button2Click(Sender: TObject);
begin

Table1.SetKey;
Table1.FieldByName('CustNo').AsString := Edit1.Text;
Table1.GotoNearest;
DBGrid1.SetFocus;

end;
DECEMBER 1995
Using FindKey
The methods, FindKey and FindNearest, provide essentially the
same capabilities as GotoKey and GotoNearest, respectively.
However, there are two major differences. First, it’s not necessary
to place a table into the dsSetKey state before calling FindKey or
FindNearest. And second, you do not explicitly assign values to
the search key buffer — this is done by FindKey and FindNearest.

Both the FindKey and FindNearest methods require a single
argument, which consists of a comma-delimited array of val-
ues to search. The first element of this array is associated with
the search value for the first field of the index, the second
array element with the second field, and so on.

The DEMO2 project, shown in Figure 2, performs the same
searches as DEMO1, except DEMO2 uses FindKey and
FindNearest instead of GotoKey and GotoNearest. For example,
the following code is associated with the OnClick event han-
dler for the button labeled FindKey:

procedure TForm1.Button1Click(Sender: TObject);
begin

if Table1.FindKey([Edit1.Text]) then
DBGrid1.SetFocus;

end;
This code segment is associated with the OnClick event handler
for the button labeled FindNearest:

procedure TForm1.Button2Click(Sender: TObject);
begin

Table1.FindNearest([Edit1.Text]);
DBGrid1.SetFocus;

end;
Case-Insensitive Searches
Whether you use GotoKey, GotoNearest, FindKey, or
FindNearest, the table searched for must use an index. In the
preceding examples, the index consisted of a single field,
based on the field CustNo. This is the primary index, and
because NEWCUST.DB is a Paradox table, it’s case-sensitive
and unique. (A unique index cannot have two records with
the same combination of values on the indexed fields.)

Whether your searches are case-sensitive or not depends on
the index. Searching on a case-sensitive index always produces
a case-sensitive search. Similarly, if your Table component has
a case-insensitive index, a case-insensitive search is performed.
Delphi INFORMANT ▲ 39

DBNavigator

Figure 5: The DEMO5
project demonstrates
using GotoKey on a
multi-field index.

Figure 3: Searches are case-sensitive
when the Table component being searched
uses a case-sensitive index. Searches are
case-insensitive when a case-insensitive
index is used, as demonstrated by the
DEMO3 project.
This is demonstrat-
ed in DEMO3,
shown in Figure 3.
This project, which
uses the dsSetKey
state, permits selec-
tion of a case-sensi-
tive index for
NEWCUST.DB
(using an index
named Company)
or a case-insensitive
search (using an
index named
ByCompany). Each
time you click on
the checkbox

labeled Case Sensitive Search, you modify the
IndexName property of the Table component, as shown in
this event handler:

procedure TForm1.CheckBox1Click(Sender: TObject);
begin

if CheckBox1.Checked then
Table1.IndexName := 'Company'

else
Table1.IndexName := 'ByCompany';

end;

The event handlers associated with the two search buttons
contain the same code as DEMO1.
Figure 4: The DEMO4
project demonstrates
using FindKey and
FindNearest in case-
sensitive and case-
insensitive searches.
The DEMO4 project, shown in Figure 4, demonstrates case-
sensitive and case-insensitive searches with FindKey and
FindNearest.
Multi-Field Indexes
Searching on multi-field indexes is slightly more involved.
Using GotoKey and GotoNearest, values can be assigned to
one or more fields of the index. However, if values are
assigned to less than all of the index fields in the search
key buffer, you must follow this rule: A field in a later
position in the index cannot be assigned a value unless all
earlier position index fields are assigned values. For exam-
ple, with a four-field index, a value can be assigned to the
third field only if the first two fields have also been
assigned values. Likewise, if you assign a value to only one
field of the index, it must be the first field.
DECEMBER 1995
The DEMO5 project is shown in Figure 5. The Table com-
ponent's IndexName property has been assigned
ByCityState, a two-field index. Since City is the first field in
this index, a search is only successful if a value is assigned to
this field of the search key buffer. Searches that include only a
value for the City field locate the first record that matches
that city. To search for a particular city-state combination,
both the City and State fields must be assigned a value.
Here’s the OnClick event handler for the button labeled
GotoKey on the DEMO5 project:

procedure TForm1.Button1Click(Sender: TObject);
begin

Table1.SetKey;
Table1.FieldByName('City').AsString := Edit1.Text;
Table1.FieldByName('State').AsString := Edit2.Text;
if Table1.GotoKey then

DBGrid1.SetFocus;
end;

This code assigns values to both the City and State fields of the
search key buffer. In this instance, if the user does not enter a
city name, Edit1 contains a blank string, and the search is only
successful if there’s a record with a blank city value and the
matching state value.

FindKey and FindNearest can also be used with multi-field
indexes. This is demonstrated by the DEMO6 project. This
code is associated with the FindKey button on DEMO6:

procedure TForm1.Button1Click(Sender: TObject);
begin

Table1.FindKey([Edit1.Text,Edit2.Text]);
DBGrid1.SetFocus;

end;
EditKey Versus SetKey
Closely related to the SetKey method is EditKey. When you
call SetKey, the search key buffer is cleared of the previous
search contents. In contrast, calling EditKey leaves the search
key buffer intact. This permits you to modify some search
values. If you perform a second search, and some of the index
field values for this search are identical to those in the first
search, you can call EditKey to enter the dsSetKey state, and
then assign search values to the modified search key buffer. If
you called SetKey prior to a second search, all search key
buffer fields would need an assigned value. Therefore, the dif-
Delphi INFORMANT ▲ 40

DBNavigator

procedure TForm1.Button1Click(Sender: TObject);
ference between SetKey and EditKey is only important when
working with multi-field indexes.
var
GotoRecord: TBookMark;

begin
if Table1.State in [dsEdit,dsInsert] then

if MessageDlg('Post record?',mtConfirmation,
[mbOK,mbCancel],0) <> mrOK then

Exit
else

Table1.Post;

GotoRecord := Table1.GetBookMark;
Self.Cursor := crHourGlass;
Table1.DisableControls;

try
if not CheckBox2.Checked then

Table1.First;
while not Table1.EOF do

begin
if Table1.FieldByName(ComboBox1.Text).AsString =

Edit1.Text then
begin

GotoRecord := Table1.GetBookMark;
Break;
Sequential Searches
It’s not always possible, or practical, to search a table based on
an index. For example, you may want to provide the user
with the ability to search any field, or combination of fields,
and it’s very unlikely that an index for such a search will
always be available.

Although there are several techniques used to look for a par-
ticular record in a table, the most straightforward is the
sequential search. To use it, move to the first record (if you
are not required to begin from the current one) and access
each record to test for the desired field values. If a match is
found, the search is successful and can be terminated.

This technique is demonstrated in the DEMO7 project,
shown in Figure 6, where the user selects the value to search
for and the field to search for it in.
Figure 7: The OnClick event handler for the Search button.

end
else

Table1.Next;
end;

finally
Table1.GotoBookMark(GotoRecord);
Table1.FreeBookMark(GotoRecord);
Table1.EnableControls;
Self.Cursor := crDefault;
DBGrid1.SetFocus;

end;

end;

Figure 6:
The DEMO7
project
demon-
strates one
technique
for scanning
a table
sequentially.
Figure 7 shows the Object Pascal code associated with the
OnClick event handler for the Search button. This code
begins by declaring a variable of the type TBookMark that
defines which record to move to at the end of a search.
The first statement in the body of the procedure is a test
of the Table component's state. If the current record has
not been posted, the user is asked to confirm the posting
of the record before continuing.

Next, a bookmark is assigned to the current record, the
form's cursor is changed to an hourglass, and the Table com-
ponent's DisableControls method is called. Calling this
method prevents the user from seeing the accessed records
while locating the specified value, and speeds the search by
avoiding a repaint of any data-aware controls.

The search begins after disabling the Table component’s con-
trols. If the checkbox labeled Continue Search From Current
Record has been checked, a call to the Table's First method
moves to the first record in the table. Next, a while loop is
entered that repeats until all records have been processed based
on the EOF (end-of-file) property of the table.
DECEMBER 1995
Within the while loop, each record is tested for the search value.
If a match is found, the bookmark is assigned to the record and
the while loop is terminated using a Break statement.

The final part of this event handler appears in the finally
clause of the try..finally block. The statements in the finally
clause are executed even if an exception is raised within the
try clause. The last steps are performed in the search: mov-
ing to the record pointed to by the bookmark, freeing the
bookmark, enabling the Table's data-aware controls, restor-
ing the form's cursor, and setting focus to the DBGrid.

This sequential-search technique is simple but limited.
First, it’s not advisable to use it with SQL tables. These
tables are set-oriented, not record-oriented. Therefore, it’s
better to use SQL statements to locate records in SQL
tables. Second, this technique is affected directly by the
number of records in the table being searched, and the
location of a matching record within that table. For exam-
ple, searching a 200,000 record table for a value found in
the last record requires just over one minute to complete
on a 100MHz Pentium with 24MB of RAM. By compari-
son, a search on the same table using an index and
Delphi INFORMANT ▲ 41

DBNavigator
GotoNearest was practically instantaneous. However, in a
small table of less than 5,000 records or so, the speed of a
sequential search is acceptable.

Conclusion
Whether your tables are indexed or not, you have several options
for locating specific records. Whenever possible, you should try
to use indexes. In fact, one of the main reasons for creating
indexes is to provide fast searches based on commonly searched
fields. However, if indexes are not practical, a sequential search
can always be used, even though it is far less efficient. ∆

The demonstration projects referenced in this article are available
on the 1995 Delphi Informant Works CD located in
INFORM\95\DEC\DI9512CJ.
Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based database
development company. He is a developer, trainer, and author of numerous books on
database software. You can reach Jensen Data Systems at (713) 359-3311, or
through CompuServe at 76307,1533.
Begin Listing Six — Demo1 Project
program Demo1;
uses

Forms, Demo1u in 'DEMO1U.PAS' {Form1};
{$R *.RES}
begin

Application.CreateForm(TForm1, Form1);
Application.Run;

end.

unit Demo1u;
interface
uses

SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs, StdCtrls, Grids,
DBGrids, DB, DBTables;

type
TForm1 = class(TForm)

DataSource1: TDataSource;
Table1: TTable;
DBGrid1: TDBGrid;
Button1: TButton;
Label1: TLabel;
Edit1: TEdit;
Button2: TButton;
procedure Button1Click(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure Button2Click(Sender: TObject);

end;
var

Form1: TForm1;
implementation
{$R *.DFM}
procedure TForm1.Button1Click(Sender: TObject);
begin

Table1.SetKey;
Table1.FieldByName('CustNo').AsString := Edit1.Text;
if Table1.GotoKey then DBGrid1.SetFocus;

end;
procedure TForm1.FormCreate(Sender: TObject);
begin

Table1.Open;
end;
procedure TForm1.Button2Click(Sender: TObject);
begin

Table1.SetKey;
DECEMBER 1995
Table1.FieldByName('CustNo').AsString := Edit1.Text;
Table1.GotoNearest;
DBGrid1.SetFocus;

end;
end.
End Listing Six
Begin Listing Seven — Demo2 Project
program Demo2;
uses

Forms, Demo2u in 'DEMO2U.PAS' {Form1};
{$R *.RES}
begin

Application.CreateForm(TForm1, Form1);
Application.Run;

end.

unit Demo2u;
interface
uses

SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs, StdCtrls, Grids,
DBGrids, DB, DBTables;

type
TForm1 = class(TForm)

DataSource1: TDataSource;
Table1: TTable;
DBGrid1: TDBGrid;
Button1: TButton;
Label1: TLabel;
Edit1: TEdit;
Button2: TButton;
procedure Button1Click(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure Button2Click(Sender: TObject);

end;
var

Form1: TForm1;
implementation
{$R *.DFM}
procedure TForm1.Button1Click(Sender: TObject);
begin

if Table1.FindKey([Edit1.Text]) then DBGrid1.SetFocus;
end;
procedure TForm1.FormCreate(Sender: TObject);
begin

Table1.Open;
end;
procedure TForm1.Button2Click(Sender: TObject);
begin

Table1.FindNearest([Edit1.Text]);
DBGrid1.SetFocus;

end;
end.
End Listing Seven
Begin Listing Eight — Demo3 Project
program Demo3;
uses

Forms, Demo3u in 'DEMO3U.PAS' {Form1};
{$R *.RES}
begin

Application.CreateForm(TForm1, Form1);
Application.Run;

end.

unit Demo3u;
interface
uses

SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs, StdCtrls, Grids,
DBGrids, DB, DBTables;

type
TForm1 = class(TForm)
Delphi INFORMANT ▲ 42

DBNavigator
DataSource1: TDataSource;
Table1: TTable;
DBGrid1: TDBGrid;
Button1, Button2: TButton;
Label1: TLabel;
Edit1: TEdit;
Table1CustNo: TFloatField;
Table1Company: TStringField;
Table1Addr1: TStringField;
Table1Addr2: TStringField;
Table1City: TStringField;
Table1State: TStringField;
Table1Zip: TStringField;
Table1Country: TStringField;
Table1Phone: TStringField;
Table1FAX: TStringField;
Table1TaxRate: TFloatField;
Table1Contact: TStringField;
Table1LastInvoiceDate: TDateTimeField;
CheckBox1: TCheckBox;
procedure Button1Click(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure Button2Click(Sender: TObject);
procedure CheckBox1Click(Sender: TObject);

end;
var

Form1: TForm1;
implementation
{$R *.DFM}
procedure TForm1.Button1Click(Sender: TObject);
begin

Table1.SetKey;
Table1.FieldByName('Company').AsString := Edit1.Text;
if Table1.GotoKey then DBGrid1.SetFocus;

end;
procedure TForm1.FormCreate(Sender: TObject);
begin

Table1.Open;
end;
procedure TForm1.Button2Click(Sender: TObject);
begin

Table1.SetKey;
Table1.FieldByName('Company').AsString := Edit1.Text;
Table1.GotoNearest;
DBGrid1.SetFocus;

end;
procedure TForm1.CheckBox1Click(Sender: TObject);
begin

if CheckBox1.Checked then Table1.IndexName := 'Company'
else Table1.IndexName := 'ByCompany';

end;
end.

End Listing Eight
DECEMBER 1995 Delphi INFORMANT ▲ 43

At Your Fingertips
b y d a v i d r i p p y

Delphi / Object Pascal

Figure 3: Pressing the Run Calculator button executes the
Windows Calculator.

e must either find a way or make one.
— Hannibal

W

How can I conditionally change the font color of a row
in a DBGrid?
This is one of the most
frequently asked ques-
tions I receive. By chang-
ing the color of selected
rows in a DBGrid,
entries can be found
quickly without having
to study the values in the
columns. An example of
this feature is shown in
Figure 1. This form con-
tains a DBGrid display-
ing the names of several friends and the amount of money they
owe me. If the amount owed is greater than US$25, the font
color for that row becomes red. Conversely, if the amount owed
is less than or equal to US$25, the font color remains black.

Figure 1: Values in the OwesMe col-
umn greater than US$25 are displayed
in red.
Figure 2: This
code is attached
to the DBGrid’s
OnDraw-
DataCell event
handler.
The code that adds this functionality to the DBGrid is
attached to the grid’s OnDrawDataCell event (see Figure 2).
First, the OwesMe column from Table1 is examined. If its
value is greater than 25, the font color for the row is
changed to the color constant clRed. The cell is then drawn
on the screen with the DefaultDrawDataCell command.
Not bad for two Object Pascal statements! — D.R.
How can I run another Windows application within
my program?
Users will often ask for the ability to execute other programs
within your Delphi application. For example, they may want
to access the Windows Calculator without returning to
Windows itself (see Figure 3).
DECEMBER 1995
This is an easy feature to implement with Delphi. Simply call
the Windows API function WinExec. The syntax for using
WinExec is:

WinExec(CmdLine: PChar; CmdShow: Word) : Word;

WinExec accepts two parameters: CmdLine, a PChar contain-
ing the name of the program to execute; and CmdShow, a
Word specifying how the program should run (minimized,
maximized, etc.). For a listing of the values for CmdShow,
search for “ShowWindow” in Delphi’s Windows API on-line
help. WinExec returns a Word that indicates the result of the
function call. A return value of less than 32 indicates the
function call was unsuccessful.

If CmdLine does not include a path, WinExec will search
for the executable in the following order: the current direc-
tory, the Windows directory, the Windows system directo-
ry, the directory containing the executable of the current
application, all directories in the path, and the directories
mapped on a network.
Delphi INFORMANT ▲ 44

Figure 4: This code is attached to the
BitButton’s OnClick event handler.

At Your Fingertips
Figure 4 shows the
OnClick event handler
for the BitButton
labeled Run
Calculator.
CALC.EXE was speci-
fied as the CmdLine

parameter, and SW_SHOWNORMAL as the CmdShow para-
meter. Because CALC.EXE is contained in the Windows directo-
ry, no path was specified. SW_SHOWNORMAL will display
the calculator in its normal state (i.e. not minimized, hidden,
etc.). — Russ Acker, Ensemble Corporation
How can I play a .WAV file in my application?
You might be tempted to use the MediaPlayer component to
play a .WAV file, but it’s like driving a nail with a sledgeham-
mer. With the ability to play MIDI, .AVI, .DAT, and other
files, MediaPlayer is probably my favorite component in
Delphi. However, this functionality adds a lot of unnecessary
overhead to your application if you simply want to play a
.WAV file. A more efficient way to play a .WAV is to call the
Windows API function sndPlaySound.

sndPlaySound is part of the Windows Multimedia extensions
and is contained in the MMSYSTEM.DLL. Delphi has already
encapsulated this function for us in the MMSYSTEM unit. To
gain access to this function, simply append MMSystem to the
end of your unit’s uses statement, shown in Figure 5.
David Rippy is a Senior Consultant with Ensemble Corporation, special-
izing in the design and deployment of client/server database applica-
tions. He has contributed to several books published by Que, and is a
contributing writer in the Paradox Informant. David can be reached on
CompuServe at 74444,415.

Figure 5: Append
MMSystem to the
unit’s uses clause
to access the
sndPlay-Sound
function. Figure 6 (Top): This code is attached to the button’s OnClick event

handler. Figure 7 (Bottom): To tile windows vertically down the
screen in the Database Desktop, hold down S while selecting
Window | Tile.
Figure 6 shows a form with a button labeled Play Chimes.
When the button is pressed, the familiar Windows chimes
.WAV file is played. Examine the code attached to the button’s
OnClick event. sndPlaySound accepts two parameters: a PChar
for the name of the .WAV file, and a Word for the mode to
play the .WAV. In this example, CHIMES.WAV is specified as
the .WAV file, and the constant snd_Async is used for the play
mode. The most commonly used values for the play mode
parameter are snd_Sync and snd_Async. Additional parameters
can be found in the MMSYSTEM unit located in the \DEL-
PHI\SOURCE\RTL\WIN directory. Specifying snd_Sync will
suspend your application until the .WAV has completed play-
ing. Specifying snd_Async will play the sound in the back-
ground while your application continues running.

Note that the constants mentioned in MMSYSTEM.PAS for the
sndPlaySound function are flags and can be combined to produce
effects different from just these two. Note also that the MMSYS-
TEM.HLP help is available in the \DELPHI\BIN directory for
reference. However, it isn’t “hooked up” with the rest of the
Delphi help system so you’ll have to call it directly. — D.R.
DECEMBER 1995
Quick Tip
In the Database Desktop, you’ve probably used the Window |
Tile command to arrange your desktop windows horizontally
across the screen. Did you know that holding V down
while selecting Window | Tile will arrange your windows ver-
tically down the screen? Check out Figure 7. ∆ — Russ Acker,
Ensemble Corporation

The demonstration projects referenced in this article are available
on the 1995 Delphi Informant Works CD located in
INFORM\95\DEC\DI9512DR.
Delphi INFORMANT ▲ 45

DECEMBER 1995

Visual Programming
Delphi / Object Pascal

By Blake Versiga

Breed and Rank
Using the Outline Component to Represent a Family Tree
Many developers consider Delphi’s Outline control the de-facto stan-
dard for representing hierarchical relationships. Outline controls are
ideal for visually displaying document components, family trees,

organizational relationships, object models, etc. Delphi itself uses the Outline
control to implement its ObjectBrowser. [For an in-depth discussion of this
tool, see Douglas Horn’s article “The ObjectBrowser” in the November 1995
Delphi Informant.]

This article will reveal some of the mysteries behind Delphi’s Outline control, and discuss
various ways to work with it. For instance, it can be completely configured at design-time or
run-time (or variations of the two) by querying a database. In addition, owner-draw capabili-
ties will be explored. The example program provides an efficient user interface for displaying
the family tree of Great Pyraneese dogs.
Distinct Markings
The Outline control (TOutline class) is on the Additional page of the Component Palette.
This control is an array of OutlineNodes (TOutlineNode class) with indexes from 1 to the
number of items in the list. For this reason, it’s important to distinguish between the Outline
control and each item (or OutlineNode).

Both Outline and OutlineNode have individual sets of properties, methods, and events. The
attributes of Outline affect it as a whole. On the other hand, attributes of the OutlineNode affect
only the specific nodes of the Outline. Each item in the Outline can have 0 to 16368 sub-items.

Its large number of properties and methods make Outline a flexible component. For example,
the PictureClosed, PictureLeaf, PictureMinus, PictureOpen, and PicturePlus properties contain
standard File Manager-like graphics that can be customized for a particular look. If five graph-
ics will not meet the challenge, however, the Outline component comes to the rescue with its
owner-draw capabilities.
Opening Eyes
Let’s begin with a small example program to demonstrate some important Outline compo-
nent concepts. First, create a new project. Place an Outline component on the form and then
drag its handles to enlarge it.
Delphi INFORMANT ▲ 46

Visual Programming
Next, double-click on the Outline’s Lines property in the
Object Inspector to display the String list editor. Each line
represents a node in the Outline. Press CF or s
to add one level of indention to the node. If spaces are used,
the String list editor will convert them to tabs before saving.

The sample application initializes each node to include the
name of the dog followed by a character denoting its gender
(see Figure 1). This is used to determine which bitmap should
be associated with the node when the Style property is set to
otOwnerDraw. After adding entries in the String list editor,
run the application by pressing 9. The Outline will expand
and collapse without any additional code (see Figure 2).
Figure 1 (Top): The String
list editor is used to define
the genealogy of Great
Pyraneese dogs.
Figure 2 (Left): The sample
project in action. Clicking on
the yellow folders causes this
“object browser” to expand
the genealogy of the dogs.
The name and gender of
each dog in this canine
family are shown.
The OutlineStyle and Picture properties can be used to
modify the appearance of the Outline control and allow
for customization without code. It’s also important to
remember that the bitmap’s size is fixed. The default
bitmaps are 14 pixels high and 14 pixels wide, and reside
in the \DELPHI\IMAGES\DEFAULT directory (if images
are installed).

The ItemHeight property works in conjunction with owner-
draw controls, for example:

Style := otOwnerDraw
DECEMBER 1995
Therefore, changing this property does not affect the con-
trols when the Style property is set to otStandard. Style can
be set to otOwnerDraw to activate the ItemHeight property.
If there is no code in the OnDrawItem event, Delphi uses
the default drawing method. This allows the standard pic-
tures to be enlarged without the additional complexity of a
full owner-draw control.
Barking at the Moon
Now that we have a functioning application, it’s essential to
capture events and respond to the user’s interaction with the
control. Typically, the developer must perform some tasks
when the user clicks on a node of the Outline. The following
example modifies the form’s caption with the Outline index
and the full text path of the selected item. The index is a one-
based long integer indicating the ordinal position of the item
with respect to the entire list.

The full text path represents the text and separators of the
nodes the user must navigate to arrive at the selected node.
The ItemSeparator property determines the character string
used to delimit items in the FullPath property. To illustrate
these properties, simply add this line of code to the Click
event of the Outline control:

Form1.Caption :='Outline Index ' +
IntToStr(Outline1.SelectedItem) + '. ' +
Outline1.Items[Outline1.SelectedItem].FullPath;
Howlin’ with the Hounds
If adventure runs in your blood, the owner-draw style is for
you. The owner-draw Outline style offers the most control
and is the ultimate in flexibility. (Again, Delphi’s
ObjectBrowser is an excellent example.) The concept behind
owner-draw controls is that the programmer controls all
aspects of a control’s appearance, including tree lines, pic-
tures, text, and indention. Although this sounds daunting,
it’s quite simple if you avoid a few pitfalls.

To receive events essential for owner-draw operations, set the
Style property to otOwnerDraw. This instructs the Outline con-
trol to call the OnDrawItem event whenever it needs to draw a
node of the Outline. Note: In early versions of the VCL, the
Outline component contained a bug that suppressed the
OnDrawItem message if the ScrollBars property was set to
ssHorizontal or ssBoth. To avoid this, set the ScrollBars property
to ssVertical or ssNone. Any version of Delphi subsequent to ver-
sion 1.0 (i.e. from the first patch onward) fixed this problem.

First, add StdCtrls to the form’s uses clause. This module
adds the needed definitions for the TOwnerDrawState. Next,
add any variables required of type TBitmap to the implemen-
tation section of the unit. This will declare bitmaps that are
accessible throughout the module.

Next, code must be added to create and free the bitmaps.
Select the Events page in the Object Inspector and double-
Delphi INFORMANT ▲ 47

Visual Programming

Blake Versiga is a Systems Engineer at Computer Language Research. He has been
involved in producing corporate solutions ranging from Pen-based computing to large
client/server applications. He can be reached on CompuServe at 73123,2737 or via
click in the Values column of the OnCreate event. Now
enter a statement to allocate storage space on the stack for
each bitmap, for example:

BitmapVariable := TBitmap.Create;

Next, initialize each bitmap. If the bitmaps reside on disk, the
LoadFromFile method can be used:

BitmapVariable.LoadFromFile('Bitmap.bmp');

The bitmap is now allocated on the stack, so the memory
must be freed when it’s no longer needed. To accomplish
this, use this statement in the OnClose event:

BitmapVariable.Free;

Finally, the Outline node must be drawn when indicated
by the Outline control. As mentioned earlier, the Outline
control calls the OnDrawItem procedure whenever a cell
requires repainting. This routine should clear the canvas
and paint any pictures, graphics, or text. The OnDraw
procedure is also responsible for showing hierarchical
indention, if necessary. Here’s the prototype for the
DrawItem procedure:

procedure TForm1.Outline1DrawItem(Control: TWinControl;
Index: Integer; Rect: TRect; State: TOwnerDrawState);

The Control parameter contains a reference to the Outline
control. Index is the position of the item in the Outline con-
trol. Note that this does not correspond to the node’s index,
but represents the ordinal index of visible items within the
Outline. Rect is the area available to the node. The State is
defined as:

TOwnerDrawState = set of (odSelected,odGrayed,odDisabled,
odChecked,odFocused);

The State parameter will contain information required to
determine how a node will be drawn. Within the
DrawItem procedure, the code should paint the node. A
typical scenario involves clearing the area that will be
painted, drawing the graphic, and finally, painting the text.
As mentioned earlier, the index passed to the OnDraw
event does not represent the node Index that will be
drawn. To obtain the actual Index, the GetItem method is
used. It translates any X,Y point to a node Index. Given
the node Index, all the pieces have come together.
DECEMBER 1995
Information about the
node is used to determine
exactly how it will be
painted. In our example,
the current node is drawn
highlighted and a different
bitmap is used depending
on the dog’s gender. A
bitmap with an underlined
M in the lower left corner
represents male dogs, and
females are denoted with
an underlined F (see
Figure 3). The example
project at runtime is
shown in Figure 4, and the
project source is shown in
Listing 9 on page 49.
Conclusion
Now that we have mas-
tered the fundamentals of
owner-draw outlines, we
can apply these techniques
to other owner-draw con-
trols that are handled in a
similar manner. Additional
owner-draw controls
include TComboBox,
TDBComboBox, TDBListBox, TListBox, and TOutline.

Owner-draw controls offer tremendous flexibility to the pro-
grammer. These techniques can be used to display anything
from hierarchical data relationships to sections of text (e.g.
the Microsoft Word for Windows Outline feature). The
Outline control is a master of distilling tremendous amounts
of information into manageable chunks of data. The key is
creativity. Now it’s your turn to bark up a storm. ∆

The Delphi project referenced in this article is available on the
1995 Delphi Informant Works CD located in
INFORM\95\DEC\DI9512BV.

Figure 3 (Top): The male and
female Pyraneese bitmaps. Not just
pretty faces, these bitmaps demon-
strate how the DrawItem procedure
and GetItem method are used to
properly paint the appropriate node.
Figure 4 (Bottom): The sample
project at run-time.
Delphi INFORMANT ▲ 48

Internet mail at 73123.2737@compuserve.com.

DECEMBER 1995 Delphi INFORMANT ▲ 49

Visual Programming

Begin Listing Nine — Outline Demo Program
program Project1;

uses
Forms,
Unit1 in 'UNIT1.PAS' {Form1};

{$R *.RES}

begin
Application.CreateForm(TForm1, Form1);
Application.Run;

end.

unit Unit1;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs, Grids, Outline,
StdCtrls, ExtCtrls, Buttons;

type
TForm1 = class(TForm)

Outline1: TOutline;
Image1: TImage;
Label1: TLabel;
Image2: TImage;
BitBtn1: TBitBtn;
procedure Outline1Click(Sender: TObject);
procedure Outline1DrawItem(Control: TWinControl;

Index: Integer;
Rect: TRect;
State: TOwnerDrawState);

procedure FormCreate(Sender: TObject);
procedure FormClose(Sender: TObject;

var Action: TCloseAction);
procedure BitBtn1Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation

var
bmpMalePyr,
bmpFemalePyr: TBitMap;

{$R *.DFM}

procedure TForm1.Outline1Click(Sender: TObject);
begin

Form1.Caption := 'Outline Index ' +
IntToStr(Outline1.SelectedItem) +
'. ' +
Outline1.Items[Outline1.SelectedItem].FullPath

end;

procedure TForm1.Outline1DrawItem(Control: TWinControl;
Index: Integer;
Rect: TRect;
State: TOwnerDrawState);

var

s: string;
x,y,
Offset: Integer;
ItemIndex: LongInt;
Node: TOutlineNode;

begin
ItemIndex := Outline1.GetItem(Rect.Left, Rect.Top);
Node := Outline1.Items[ItemIndex];

with Outline1.Canvas do
begin

if State = [odSelected,odFocused] then
begin

Brush.Color := clHighlight;
Pen.Color := clHighlightText;

end
else

begin
Brush.Color := Outline1.Color;
Pen.Color := clWindowText;

end;

FillRect(Rect);
Rect.Left := Rect.Left + (Node.Level * 15);

{ First draw the icon }
if Copy(Node.Text,length(Node.Text),1) = 'F' then

BrushCopy(Bounds(Rect.Left,Rect.Top,35,25),
bmpFemalePyr,Bounds(0,0,35,25),clLtGray)

else
BrushCopy(Bounds(Rect.Left,Rect.Top,35,25),

bmpMalePyr,Bounds(0,0,35,25),clLtGray);

Font := Outline1.Font; { Set the font }
{ Then draw the string }
s := copy(Node.Text, 1, Length(Node.Text) - 2);
{ Indent and center Text }
x := Rect.left + bmpMalePyr.Width + 7;
y := Rect.Top + (((Rect.Bottom-Rect.Top) —

abs(Font.Height)) div 2);

TextOut(x, y, s);
end;

end;

procedure TForm1.FormCreate(Sender: TObject);
begin

{ Load the bitmap from the current directory }
bmpMalePyr := TBitMap.Create;
bmpMalePyr.LoadFromFile('MalePyr.Bmp');
bmpFemalePyr := TBitMap.Create;
bmpFemalePyr.LoadFromFile('FemPyr.Bmp');

end;

procedure TForm1.FormClose(Sender: TObject;
var Action: TCloseAction);

begin
bmpMalePyr.Free;
bmpFemalePyr.Free;

end;

procedure TForm1.BitBtn1Click(Sender: TObject);
begin

Form1.Close;
end;

end.

End Listing Nine

ReportPrinter
Nevrona Designs’ New Report Writer

New & Used
B Y B i l l T o d d
Every now and then a whole new category of
product comes along that makes you say, “Wow.
Why hasn’t somebody done this before?”

ReportPrinter from Nevrona Designs is just such a
product. What can be so different about a report
writer? The answer is control, integration, and size.

Reports are created in ReportPrinter by writing Object Pascal
code, not by using a visual designer such as those in
ReportSmith and Crystal Reports. At first this may sound like a
big step backward, but it’s really a step to the side — and a step
into control over report design that you’ve never had before.

To understand the control and flexibility of ReportPrinter,
look at the two-page report illustrated in Figures 1 and 2.
This is one of the reports produced by the demonstration
program that comes with ReportPrinter. The two pages in
this report are completely different. Figure 1 contains multi-
ple tables in varying formats and locations, while Figure 2
contains a collection of graphic shapes intermixed with text.

You simply cannot create a report like this in a traditional
Windows report writer.
Figure 1 (Top): A ReportPrinter report containing multiple tables
in various formats. Figure 2 (Bottom): The second page of the
report shown in Figure 1 containing mixed graphics and text.
Let’s Compare
Is ReportPrinter a replacement for traditional report writers
like Crystal Reports and ReportSmith? Definitely not. Each
has its place defined by its strengths and weaknesses. With
ReportPrinter you get:
• Integration. ReportPrinter is a set of native Delphi

components to add to your application. Everything is
compiled into the .EXE file. There are no separate
.DLLs or report files to distribute. And since the report
is created entirely by compiled Pascal code, you get the
output fast.
DECEMBER 1995 Delphi INFORMANT ▲ 50

New & Used

Crystal Reports Delphi Control
• Small size. Adding a report to an application increases the
.EXE file size by about 30KB for the first report, and less for
subsequent reports. Contrast that with the megabytes of
additional files distributed with a conventional report writer.

• Control. You can put anything, anywhere, on any page, in
any order to get the report you want. Since the position is
specified in your code in inches or centimeters, each
object on the report prints exactly where you want it.

• Direct access to data. Since a report is part of an appli-
cation, you access data using Delphi’s Table, Query, and
StoredProc components. There is no separate database
connection for your reports, which is especially conve-
nient for printing them based on the current record.

• Slower development time. This is the drawback to
using ReportPrinter. Because you create each report by
writing code, it takes longer to design most reports
using ReportPrinter than with a traditional report
writer. This is particularly true if the report requires
numerous groups and subtotals.
DECEMBER 1995
With a traditional report writer you get:
• Fast, easy, WYSIWYG development. You can see what the

finished report will look like as it’s created. This saves time.
• Instant calculations. Traditional report writers provide

fast, easy sorting, grouping, and subtotaling. Most offer
other functions such as counts and averages. You must
write code to perform these calculations in
ReportPrinter.

• A large run-time environment. This is the drawback to
traditional report writers. To create reports with a tradi-
tional report writer, you must distribute its run-time
environment with your application. This means 2 to
4MB of DLLs and supporting files, plus at least one
file for each report.
Consider the Options
When you need to include reports with custom applications,
consider which tool is best suited for the job, as well as the
time you are willing to invest creating the reports.
Now available, Crystal Reports version 4.5 is
a welcome addition for Delphi developers. It
ships with a native Delphi component that
provides an easy interface to the Crystal print
engine through a host of properties and
methods.

Basic report printing and viewing is very
easy. After adding the Crystal component
to the Delphi Component Palette you will
find it located on the Data Access page.
Just drop a TCcrpe component on your
form and set the following properties to
print your report:

CopiesToPrinter. This property defaults to 1
so you will only need to change it if you need
more than one copy of your report.

Destination. This property determines where
your report will go. You can select from any
of the following constants:
• toWindow
• toPrinter
• toFile
• toEmailViaMAPI
• toEmailViaVIM

ReportName. The name of the file that con-
tains the Crystal report to print.

WindowState. You need only be concerned
with this property if the Destination property is
set to toWindow. To control the size of the
report preview window, WindowState can be set
to wsMaximized, wsMinimized, or wsDefault.

WindowTitle. This property is optional, but
if you are sending the report to a window,
it allows you to set the title for the report
preview window.

Once you have set the required properties,
run the report by setting the Action property
to 1. While these are the properties you will
use most, the Crystal component includes
over three pages of properties you can set
via the Property Inspector, and even more
that you can set at run-time in your code.
This provides access to just about all the
flexibility for which the Crystal print engine
is renowned.

Unfortunately this component is seriously
flawed by bad design and poor documen-
tation. The component is supposed to pro-
vide a native Delphi alternative to the
Crystal VBX that shipped with earlier ver-
sions of Crystal Reports (which you may
have been using in your Delphi applica-
tions). However, the designers changed the
names of some of the properties and many
of the constants used to set properties. For
example, the VBX property that stores the
name of the report to run is
ReportFileName, while in the Delphi com-
ponent it is ReportName. Another example
is that the PrintReport method from the VBX
is not supported in the Delphi component.
This means that converting your existing
programs from the VBX to the Delphi com-
ponent is more work than it should be.

Learning to use the component is a chal-
lenge too. The only documentation is a
Windows help file and it is woefully incom-
plete. While it does include the component
properties, it does not include any of the
methods. The “readme” file is no help
either. It is simply a list of changes and bug
fixes to prior versions of the component.
You may expect this in the readme for a
beta version of a shareware product, but
not in the shipping version of a commercial
product. The best advice I can offer is to
look at the documentation for the VBX in
the Crystal Reports Developer’s Reference
and use that as a guide for getting started
with the Delphi component.

The version of the Delphi component that
ships with Crystal Reports 4.5 is 1.06. By
the time you read this review, version 1.08
should be available on the Crystal bulletin
board and on their CompuServe forum. The
pre-release copy of version 1.08 that I saw
includes a much more complete help file
and a demonstration program that shows
you how to use many of the component’s
features. This new version is worth the
download time just for the help file and the
demonstration program.

The Crystal Reports component is a welcome
tool that makes it easy to use this powerful
report writer in your Delphi programs, while
giving you access to all the features of the
Crystal print engine. Although it will take
some time, it is worth your while to convert
your programs from the VBX to the Delphi
component. You will no longer need to dis-
tribute the VBX file, and you’ll be ready to
compile your program with Delphi32 where
VBXes are not supported.

— Bill Todd
Delphi INFORMANT ▲ 51

New & Used

Figure 3: A sample ReportPrinter report based on a table using the
OnPrintPage event.

ReportPrinter version 1.1 by
Nevrona Designs is a report writer
for Delphi. Consisting of four Delphi
components, it enables developers
to use Object Pascal to create cus-
tom reports. Delphi applications that
integrate a report created with
ReportPrinter are more size-efficient
than applications distributed with
conventional report writers.
ReportPrinter also gives developers
more control over reports, and direct
access to data using the Table,
Query, and StoredProc components.

Nevrona Designs
2581 East Commonwealth Circle
Chandler, AZ 85225
Voice: (602) 899-0794
Fax: (602) 530-4823
E-Mail: CIS: 70711,2020 or
Internet: info@nevrona.com
Price: US$99
Do not feel limited because you have to create ReportPrinter
reports by writing Object Pascal code. ReportPrinter supports
tabular reports, snaked columns, memos, graphics, line and
shape drawing, and fonts. To create business graphs in your
reports, pass the ReportPrinter canvas handle to the ChartFX
component that ships with Delphi.

ReportPrinter consists of four Delphi components that afford
the functionality you require.
• The ReportPrinter component lets you send a report to

the current printer.
• ReportFiler is virtually identical to the ReportPrinter

component except it sends a report to either a disk file or
memory stream.

• ReportFiler lets you create the report; then send it to the
printer using the FilePrinter component, or to the screen
using the FilePreview component.

• FilePreview supports zooming, panning, and printing from
the preview window. You can either create your own pre-
view form, or use the one included in ReportPrinter’s
demonstration program.

The ReportPrinter and ReportFiler components make creat-
ing a report easy with a rich suite of events. You can attach
the reporting code to:
• OnBeforePrint
• OnAfterPrint
• OnNewColumn
• OnNewPage
• OnPrint
• OnPrintPage
• OnPrintHeader
• OnPrintFooter

The OnPrintPage event is particularly well suited to reports
where each page has the same layout, while OnPrint is the event
to use for reports where the layout varies from page to page.
Figure 3 shows one of the sample reports based on a table.
Bill Todd is President of The Database Group, Inc., a consulting firm based near
Phoenix. Bill is co-author of Delphi: A Developer’s Guide (M&T Books, 1995). He is
also a member of Team Borland and a speaker at all Borland database conferences.
Bill can be reached at (602) 802-0178, or on CompuServe at 71333,2146.
The Documentation
If the current version of ReportPrinter has a shortcoming, it’s
the documentation. The manual is only 56 pages, which is
mostly a reference for the component methods and proper-
ties. Only six pages are devoted to the tutorial, and that is not
enough introduction to ReportPrinter’s features.
DECEMBER 1995
On the other hand, the demonstration
program is excellent. It includes five
reports and an excellent general purpose
preview form. To use this powerful tool
effectively, be prepared to spend time
working through the code in the
demonstration program. ReportPrinter
also ships with full source code.
Conclusion
ReportPrinter is a must-have tool
for the serious Delphi developer. It
lets you do things you cannot do
with any other report writer.
Whether you need reports compiled
into a program for easy distribu-
tion, flexible page layout that varies
from page to page, or precise posi-
tioning for pre-printed forms,
ReportPrinter is the tool that han-
dles almost any reporting task. ∆
Delphi INFORMANT ▲ 52

	Table of Contents
	Editorial
	Delphi Tools
	TurboPower Releases Async Professional for Delphi
	ReportWorks 1.03 for Delphi Ships
	Objective Software Technology Introduces ABC for Delphi
	VCaLive Offers New 3D Features

	Newsline
	InterBase Distribution, Pricing, and Licensing Explained
	UK Borland Developers Conference 1996
	Informant Communications Group Launches New Web Site
	SD 95 East: Update
	TurboPower’s Orpheus Bundles with BSS Application Framework

	Objects in the Stream
	Overview
	TacStreamable: Building Persistent Objects
	TacObjStringList: Managing Persistent Objects
	The TacObjStringList Class
	Implementing TacObjStringList
	TacObjStream: Building a Home for Persistent Objects
	TacFileObjStream: Saving Objects to Disk
	Streams and Persistent Objects in Action
	Conclusion

	Delphi MRU
	Starting Off
	Adding MRU List Objects
	Managing the .INI File
	Updating the List
	Displaying the List
	Opening Files from the MRU List
	Ready to Run

	Upping the Ante
	Installing the CardDeck Component
	Using the TCardDeck
	TCardDeck Utility Functions
	TCardDeck Informant
	Constants
	TCardDeck.Paint
	The cdCardDeck Custom Property Editor
	Registering the TCardValueProperty
	Conclusion
	Listing One — Cardsp.DPR
	Listing Two — CardDeck.PAS
	Listing Three — Cardu.PAS

	Hotspots
	Interacting with an Image
	Regions
	Using Regions
	Using the Application
	Conclusion
	Listing Four — Region.DPR
	Listing Five — Region1.PAS

	Finding Your Keys
	SetKey and GotoKey
	Using FindKey
	Case-Insensitive Searches
	Multi-Field Indexes
	EditKey Versus SetKey
	Sequential Searches
	Conclusion
	Listing Six — Demo1 Project
	Listing Seven — Demo2 Project
	Listing Eight — Demo3 Project

	At Your Fingertips
	How can I conditionally change the font color of a row in a DBGrid?
	How can I run another Windows application within my program?
	How can I play a .WAV file in my application?
	Quick Tip

	Breed and Rank
	Distinct Markings
	Opening Eyes
	Barking at the Moon
	Howlin’ with the Hounds
	Conclusion
	Listing Nine — Outline Demo Program

	ReportPrinter
	Let’s Compare
	Sidebar - Crystal Reports Delphi Control

	Consider the Options
	The Documentation
	Conclusion

